Nuprl Lemma : compact-dist_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[A:Type].  ∀[c:mcompact(A;d)]. ∀[x:X].  (dist(x;A) ∈ ℝ) supposing A ⊆r X
Proof
Definitions occuring in Statement : 
compact-dist: dist(x;A)
, 
mcompact: mcompact(X;d)
, 
metric: metric(X)
, 
real: ℝ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
compact-dist: dist(x;A)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
metric_wf, 
subtype_rel_wf, 
mcompact_wf, 
metric-on-subtype, 
compact-inf_wf, 
rmetric_wf, 
real_wf, 
mfun-subtype2, 
dist-fun_wf
Rules used in proof : 
universeEquality, 
instantiate, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
dependent_functionElimination, 
sqequalRule, 
independent_isectElimination, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:Type].
    \mforall{}[c:mcompact(A;d)].  \mforall{}[x:X].    (dist(x;A)  \mmember{}  \mBbbR{})  supposing  A  \msubseteq{}r  X
Date html generated:
2019_10_30-AM-07_12_22
Last ObjectModification:
2019_10_25-PM-04_45_31
Theory : reals
Home
Index