Nuprl Lemma : dist-fun_wf

[X:Type]. ∀[d:metric(X)]. ∀[x:X].  (dist-fun(d;x) ∈ FUN(X ⟶ ℝ))


Proof




Definitions occuring in Statement :  dist-fun: dist-fun(d;x) mfun: FUN(X ⟶ Y) rmetric: rmetric() metric: metric(X) real: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) prop: so_apply: x[s] implies:  Q all: x:A. B[x] is-mfun: f:FUN(X;Y) dist-fun: dist-fun(d;x) mfun: FUN(X ⟶ Y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  meq_weakening mdist_functionality req_functionality req_weakening rmetric-meq istype-universe metric_wf rmetric_wf real_wf is-mfun_wf meq_wf mdist_wf
Rules used in proof :  independent_isectElimination productElimination universeEquality instantiate isectIsTypeImplies isect_memberEquality_alt equalitySymmetry equalityTransitivity axiomEquality because_Cache universeIsType lambdaFormation_alt inhabitedIsType hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality_alt sqequalRule dependent_set_memberEquality_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x:X].    (dist-fun(d;x)  \mmember{}  FUN(X  {}\mrightarrow{}  \mBbbR{}))



Date html generated: 2019_10_30-AM-07_11_40
Last ObjectModification: 2019_10_25-PM-04_32_59

Theory : reals


Home Index