Nuprl Lemma : dist-fun_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[x:X].  (dist-fun(d;x) ∈ FUN(X ⟶ ℝ))
Proof
Definitions occuring in Statement : 
dist-fun: dist-fun(d;x)
, 
mfun: FUN(X ⟶ Y)
, 
rmetric: rmetric()
, 
metric: metric(X)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
is-mfun: f:FUN(X;Y)
, 
dist-fun: dist-fun(d;x)
, 
mfun: FUN(X ⟶ Y)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
meq_weakening, 
mdist_functionality, 
req_functionality, 
req_weakening, 
rmetric-meq, 
istype-universe, 
metric_wf, 
rmetric_wf, 
real_wf, 
is-mfun_wf, 
meq_wf, 
mdist_wf
Rules used in proof : 
independent_isectElimination, 
productElimination, 
universeEquality, 
instantiate, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
universeIsType, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaEquality_alt, 
sqequalRule, 
dependent_set_memberEquality_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x:X].    (dist-fun(d;x)  \mmember{}  FUN(X  {}\mrightarrow{}  \mBbbR{}))
Date html generated:
2019_10_30-AM-07_11_40
Last ObjectModification:
2019_10_25-PM-04_32_59
Theory : reals
Home
Index