Nuprl Lemma : meq_weakening

[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  x ≡ supposing y ∈ X


Proof




Definitions occuring in Statement :  meq: x ≡ y metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q meq: x ≡ y metric: metric(X)
Lemmas referenced :  meq_wf squash_wf true_wf metric_wf istype-universe subtype_rel_self iff_weakening_equal meq-same req_witness int-to-real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType inhabitedIsType instantiate universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed because_Cache independent_isectElimination productElimination independent_functionElimination setElimination rename equalityIstype isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    x  \mequiv{}  y  supposing  x  =  y



Date html generated: 2019_10_29-AM-10_55_56
Last ObjectModification: 2019_10_02-AM-09_37_11

Theory : reals


Home Index