Nuprl Lemma : compact-inf-property
∀[X:Type]
∀d:metric(X). ∀c:mcompact(X;d). ∀f:FUN(X ⟶ ℝ).
((∀x:X. (compact-inf{i:l}(d;c;f) ≤ (f x))) ∧ (∀e:ℝ. ((r0 < e)
⇒ (∃x:X. ((f x) < (compact-inf{i:l}(d;c;f) + e))))))
Proof
Definitions occuring in Statement :
compact-inf: compact-inf{i:l}(d;c;f)
,
mcompact: mcompact(X;d)
,
mfun: FUN(X ⟶ Y)
,
rmetric: rmetric()
,
metric: metric(X)
,
rleq: x ≤ y
,
rless: x < y
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
compact-inf: compact-inf{i:l}(d;c;f)
,
mfun: FUN(X ⟶ Y)
,
pi2: snd(t)
,
mcompact: mcompact(X;d)
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
istype-universe,
metric_wf,
mcompact_wf,
rmetric_wf,
real_wf,
mfun_wf,
compact-mc_wf,
m-inf-property
Rules used in proof :
universeEquality,
instantiate,
universeIsType,
hypothesis,
rename,
setElimination,
sqequalRule,
productElimination,
dependent_functionElimination,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
lambdaFormation_alt,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[X:Type]
\mforall{}d:metric(X). \mforall{}c:mcompact(X;d). \mforall{}f:FUN(X {}\mrightarrow{} \mBbbR{}).
((\mforall{}x:X. (compact-inf\{i:l\}(d;c;f) \mleq{} (f x)))
\mwedge{} (\mforall{}e:\mBbbR{}. ((r0 < e) {}\mRightarrow{} (\mexists{}x:X. ((f x) < (compact-inf\{i:l\}(d;c;f) + e))))))
Date html generated:
2019_10_30-AM-07_09_29
Last ObjectModification:
2019_10_25-PM-02_41_45
Theory : reals
Home
Index