Nuprl Lemma : m-inf-property

[X:Type]
  ∀d:metric(X). ∀mtb:m-TB(X;d). ∀f:X ⟶ ℝ. ∀mc:UC(f:X ⟶ ℝ).
    ((∀x:X. (m-inf{i:l}(d;mtb;f;mc) ≤ (f x))) ∧ (∀e:ℝ((r0 < e)  (∃x:X. ((f x) < (m-inf{i:l}(d;mtb;f;mc) e))))))


Proof




Definitions occuring in Statement :  m-inf: m-inf{i:l}(d;mtb;f;mc) m-TB: m-TB(X;d) m-unif-cont: UC(f:X ⟶ Y) rmetric: rmetric() metric: metric(X) rleq: x ≤ y rless: x < y radd: b int-to-real: r(n) real: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  guard: {T} uimplies: supposing a exists: x:A. B[x] prop: implies:  Q and: P ∧ Q lower-bound: lower-bound(A;b) rset-member: x ∈ A inf: inf(A) b all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rleq_weakening m-inf_wf radd_wf rless_transitivity2 req_inversion req_wf req_weakening istype-universe metric_wf m-TB_wf rmetric_wf m-unif-cont_wf real_wf int-to-real_wf rless_wf m-inf-property1
Rules used in proof :  rename independent_isectElimination because_Cache dependent_pairFormation_alt applyEquality universeEquality instantiate functionIsType natural_numberEquality universeIsType independent_functionElimination promote_hyp productElimination independent_pairFormation sqequalRule dependent_functionElimination lambdaFormation_alt hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}mtb:m-TB(X;d).  \mforall{}f:X  {}\mrightarrow{}  \mBbbR{}.  \mforall{}mc:UC(f:X  {}\mrightarrow{}  \mBbbR{}).
        ((\mforall{}x:X.  (m-inf\{i:l\}(d;mtb;f;mc)  \mleq{}  (f  x)))
        \mwedge{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:X.  ((f  x)  <  (m-inf\{i:l\}(d;mtb;f;mc)  +  e))))))



Date html generated: 2019_10_30-AM-06_53_43
Last ObjectModification: 2019_10_25-PM-02_17_52

Theory : reals


Home Index