Nuprl Lemma : m-inf_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[mtb:m-TB(X;d)]. ∀[f:X ⟶ ℝ]. ∀[mc:UC(f:X ⟶ ℝ)].  (m-inf{i:l}(d;mtb;f;mc) ∈ ℝ)
Proof
Definitions occuring in Statement : 
m-inf: m-inf{i:l}(d;mtb;f;mc), 
m-TB: m-TB(X;d), 
m-unif-cont: UC(f:X ⟶ Y), 
rmetric: rmetric(), 
metric: metric(X), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
top: Top, 
pi1: fst(t), 
uimplies: b supposing a, 
guard: {T}, 
rset: Set(ℝ), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
m-inf: m-inf{i:l}(d;mtb;f;mc), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
istype-void, 
pi1_wf_top, 
sup_wf, 
subtype_rel_self, 
req_transitivity, 
req_inversion, 
req_wf, 
inf_wf, 
rmetric_wf, 
m-unif-cont_wf, 
real_wf, 
m-TB_wf, 
metric_wf, 
m-TB-sup-and-inf
Rules used in proof : 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalityIstype, 
voidElimination, 
isect_memberEquality_alt, 
independent_pairEquality, 
functionEquality, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
dependent_pairFormation_alt, 
productElimination, 
productEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
sqequalHypSubstitution, 
introduction, 
universeIsType, 
functionIsType, 
isectIsType, 
equalitySymmetry, 
equalityTransitivity, 
isectElimination, 
lambdaEquality_alt, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[mtb:m-TB(X;d)].  \mforall{}[f:X  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[mc:UC(f:X  {}\mrightarrow{}  \mBbbR{})].
    (m-inf\{i:l\}(d;mtb;f;mc)  \mmember{}  \mBbbR{})
 Date html generated: 
2019_10_30-AM-06_53_02
 Last ObjectModification: 
2019_10_25-PM-02_17_27
Theory : reals
Home
Index