Nuprl Lemma : m-TB-sup-and-inf
∀[X:Type]
  ∀dX:metric(X)
    (m-TB(X;dX)
    
⇒ (∀f:X ⟶ ℝ. (UC(f:X ⟶ ℝ) 
⇒ ((∃a:ℝ. inf(λr.∃x:X. (r = (f x))) = a) ∧ (∃b:ℝ. sup(λr.∃x:X. (r = (f x))) = b)))))
Proof
Definitions occuring in Statement : 
m-TB: m-TB(X;d)
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
rmetric: rmetric()
, 
metric: metric(X)
, 
inf: inf(A) = b
, 
sup: sup(A) = b
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rge: x ≥ y
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
rev_implies: P 
⇐ Q
, 
rneq: x ≠ y
, 
image-ap: f[x]
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
meq: x ≡ y
, 
rset-member: x ∈ A
, 
pi1: fst(t)
, 
image-space: f[X]
, 
mdist: mdist(d;x;y)
, 
image-metric: image-metric(d)
, 
rmetric: rmetric()
, 
cand: A c∧ B
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
totally-bounded: totally-bounded(A)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
rset: Set(ℝ)
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rleq_weakening_equal, 
rless_functionality_wrt_implies, 
req_weakening, 
rsub_functionality, 
rabs_functionality, 
rless_functionality, 
decidable__lt, 
int_seg_properties, 
rless-int, 
rdiv_wf, 
image-ap_wf, 
rabs-difference-is-zero, 
sq_stable__req, 
rsub_wf, 
rabs_wf, 
rset-member_wf, 
int_seg_wf, 
subtract-add-cancel, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
subtract_wf, 
image-metric_wf, 
image-space_wf, 
m-TB-iff, 
int-to-real_wf, 
rless_wf, 
small-reciprocal-real, 
istype-universe, 
metric_wf, 
m-TB_wf, 
m-unif-cont_wf, 
totally-bounded-sup, 
totally-bounded-inf, 
subtype_rel_self, 
req_transitivity, 
req_inversion, 
req_wf, 
rmetric_wf, 
real_wf, 
continuous-image-m-TB
Rules used in proof : 
inrFormation_alt, 
closedConclusion, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
equalityIstype, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
rename, 
setElimination, 
natural_numberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_pairFormation, 
instantiate, 
functionIsType, 
inhabitedIsType, 
because_Cache, 
productIsType, 
independent_isectElimination, 
dependent_pairFormation_alt, 
productElimination, 
universeIsType, 
applyEquality, 
productEquality, 
sqequalRule, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type]
    \mforall{}dX:metric(X)
        (m-TB(X;dX)
        {}\mRightarrow{}  (\mforall{}f:X  {}\mrightarrow{}  \mBbbR{}
                    (UC(f:X  {}\mrightarrow{}  \mBbbR{})
                    {}\mRightarrow{}  ((\mexists{}a:\mBbbR{}.  inf(\mlambda{}r.\mexists{}x:X.  (r  =  (f  x)))  =  a)  \mwedge{}  (\mexists{}b:\mBbbR{}.  sup(\mlambda{}r.\mexists{}x:X.  (r  =  (f  x)))  =  b)))))
Date html generated:
2019_10_30-AM-06_52_21
Last ObjectModification:
2019_10_25-PM-02_08_02
Theory : reals
Home
Index