Nuprl Lemma : m-TB-sup-and-inf

[X:Type]
  ∀dX:metric(X)
    (m-TB(X;dX)
     (∀f:X ⟶ ℝ(UC(f:X ⟶ ℝ ((∃a:ℝinf(λr.∃x:X. (r (f x))) a) ∧ (∃b:ℝsup(λr.∃x:X. (r (f x))) b)))))


Proof




Definitions occuring in Statement :  m-TB: m-TB(X;d) m-unif-cont: UC(f:X ⟶ Y) rmetric: rmetric() metric: metric(X) inf: inf(A) b sup: sup(A) b req: y real: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rge: x ≥ y less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} rev_implies:  Q rneq: x ≠ y image-ap: f[x] squash: T sq_stable: SqStable(P) meq: x ≡ y rset-member: x ∈ A pi1: fst(t) image-space: f[X] mdist: mdist(d;x;y) image-metric: image-metric(d) rmetric: rmetric() cand: c∧ B top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) sq_exists: x:A [B[x]] rless: x < y nat_plus: + nat: iff: ⇐⇒ Q totally-bounded: totally-bounded(A) and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a guard: {T} exists: x:A. B[x] prop: rset: Set(ℝ) member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  rleq_weakening_equal rless_functionality_wrt_implies req_weakening rsub_functionality rabs_functionality rless_functionality decidable__lt int_seg_properties rless-int rdiv_wf image-ap_wf rabs-difference-is-zero sq_stable__req rsub_wf rabs_wf rset-member_wf int_seg_wf subtract-add-cancel istype-le int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties subtract_wf image-metric_wf image-space_wf m-TB-iff int-to-real_wf rless_wf small-reciprocal-real istype-universe metric_wf m-TB_wf m-unif-cont_wf totally-bounded-sup totally-bounded-inf subtype_rel_self req_transitivity req_inversion req_wf rmetric_wf real_wf continuous-image-m-TB
Rules used in proof :  inrFormation_alt closedConclusion imageElimination baseClosed imageMemberEquality equalityIstype voidElimination isect_memberEquality_alt int_eqEquality approximateComputation unionElimination rename setElimination natural_numberEquality universeEquality equalitySymmetry equalityTransitivity independent_pairFormation instantiate functionIsType inhabitedIsType because_Cache productIsType independent_isectElimination dependent_pairFormation_alt productElimination universeIsType applyEquality productEquality sqequalRule lambdaEquality_alt dependent_set_memberEquality_alt independent_functionElimination hypothesis dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type]
    \mforall{}dX:metric(X)
        (m-TB(X;dX)
        {}\mRightarrow{}  (\mforall{}f:X  {}\mrightarrow{}  \mBbbR{}
                    (UC(f:X  {}\mrightarrow{}  \mBbbR{})
                    {}\mRightarrow{}  ((\mexists{}a:\mBbbR{}.  inf(\mlambda{}r.\mexists{}x:X.  (r  =  (f  x)))  =  a)  \mwedge{}  (\mexists{}b:\mBbbR{}.  sup(\mlambda{}r.\mexists{}x:X.  (r  =  (f  x)))  =  b)))))



Date html generated: 2019_10_30-AM-06_52_21
Last ObjectModification: 2019_10_25-PM-02_08_02

Theory : reals


Home Index