Nuprl Lemma : continuous-image-m-TB
∀[X:Type]
  ∀dX:metric(X). ∀[Y:Type]. ∀dY:metric(Y). ∀f:X ⟶ Y.  (UC(f:X ⟶ Y) 
⇒ m-TB(X;dX) 
⇒ m-TB(f[X];image-metric(dY)))
Proof
Definitions occuring in Statement : 
m-TB: m-TB(X;d)
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
image-metric: image-metric(d)
, 
image-space: f[X]
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
pi1: fst(t)
, 
mdist: mdist(d;x;y)
, 
image-metric: image-metric(d)
, 
image-ap: f[x]
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
rneq: x ≠ y
, 
image-space: f[X]
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
req_weakening, 
meq_weakening, 
mdist_functionality, 
rleq_functionality, 
sq_stable__rleq, 
rleq_weakening_rless, 
rless_transitivity2, 
rless_wf, 
int_seg_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
mdist_wf, 
rleq_wf, 
int_seg_wf, 
image-ap_wf, 
subtract-add-cancel, 
istype-le, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__le, 
nat_plus_properties, 
subtract_wf, 
small-reciprocal-real, 
istype-universe, 
metric_wf, 
m-unif-cont_wf, 
m-TB_wf, 
istype-nat, 
istype-less_than, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
image-metric_wf, 
image-space_wf, 
m-TB-iff
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
imageElimination, 
inrFormation_alt, 
because_Cache, 
closedConclusion, 
productIsType, 
applyEquality, 
universeEquality, 
instantiate, 
inhabitedIsType, 
functionIsType, 
universeIsType, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type]
    \mforall{}dX:metric(X)
        \mforall{}[Y:Type]
            \mforall{}dY:metric(Y).  \mforall{}f:X  {}\mrightarrow{}  Y.    (UC(f:X  {}\mrightarrow{}  Y)  {}\mRightarrow{}  m-TB(X;dX)  {}\mRightarrow{}  m-TB(f[X];image-metric(dY)))
Date html generated:
2019_10_30-AM-06_51_59
Last ObjectModification:
2019_10_25-PM-02_03_44
Theory : reals
Home
Index