Nuprl Lemma : m-unif-cont_wf
∀[X:Type]. ∀[dx:metric(X)]. ∀[Y:Type]. ∀[dy:metric(Y)]. ∀[f:X ⟶ Y].  (UC(f:X ⟶ Y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
m-unif-cont: UC(f:X ⟶ Y)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
metric_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
mdist_wf, 
rleq_wf, 
int-to-real_wf, 
rless_wf, 
real_wf, 
exists_wf, 
nat_plus_wf, 
all_wf
Rules used in proof : 
universeEquality, 
instantiate, 
inhabitedIsType, 
isectIsTypeImplies, 
functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
setIsType, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
independent_functionElimination, 
productElimination, 
dependent_functionElimination, 
inrFormation_alt, 
independent_isectElimination, 
applyEquality, 
functionEquality, 
because_Cache, 
rename, 
setElimination, 
universeIsType, 
lambdaFormation_alt, 
hypothesisEquality, 
natural_numberEquality, 
setEquality, 
closedConclusion, 
lambdaEquality_alt, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[dx:metric(X)].  \mforall{}[Y:Type].  \mforall{}[dy:metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    (UC(f:X  {}\mrightarrow{}  Y)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_36_07
Last ObjectModification:
2019_10_25-PM-01_57_26
Theory : reals
Home
Index