Nuprl Lemma : m-unif-cont_wf

[X:Type]. ∀[dx:metric(X)]. ∀[Y:Type]. ∀[dy:metric(Y)]. ∀[f:X ⟶ Y].  (UC(f:X ⟶ Y) ∈ ℙ)


Proof




Definitions occuring in Statement :  m-unif-cont: UC(f:X ⟶ Y) metric: metric(X) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) sq_exists: x:A [B[x]] rless: x < y rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a nat_plus: + implies:  Q all: x:A. B[x] prop: so_lambda: λ2x.t[x] m-unif-cont: UC(f:X ⟶ Y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe metric_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rless-int rdiv_wf mdist_wf rleq_wf int-to-real_wf rless_wf real_wf exists_wf nat_plus_wf all_wf
Rules used in proof :  universeEquality instantiate inhabitedIsType isectIsTypeImplies functionIsType equalitySymmetry equalityTransitivity axiomEquality setIsType independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination independent_functionElimination productElimination dependent_functionElimination inrFormation_alt independent_isectElimination applyEquality functionEquality because_Cache rename setElimination universeIsType lambdaFormation_alt hypothesisEquality natural_numberEquality setEquality closedConclusion lambdaEquality_alt hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}[dx:metric(X)].  \mforall{}[Y:Type].  \mforall{}[dy:metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    (UC(f:X  {}\mrightarrow{}  Y)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-06_36_07
Last ObjectModification: 2019_10_25-PM-01_57_26

Theory : reals


Home Index