Nuprl Lemma : image-space_wf

[X,Y:Type]. ∀[dY:metric(Y)]. ∀[f:X ⟶ Y].  (f[X] ∈ Type)


Proof




Definitions occuring in Statement :  image-space: f[X] metric: metric(X) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: exists: x:A. B[x] image-space: f[X] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe metric_wf meq_wf
Rules used in proof :  universeEquality instantiate inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType functionIsType equalitySymmetry equalityTransitivity axiomEquality hypothesis applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality productEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dY:metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    (f[X]  \mmember{}  Type)



Date html generated: 2019_10_30-AM-06_34_09
Last ObjectModification: 2019_10_25-AM-11_04_49

Theory : reals


Home Index