Nuprl Lemma : image-space_wf
∀[X,Y:Type]. ∀[dY:metric(Y)]. ∀[f:X ⟶ Y].  (f[X] ∈ Type)
Proof
Definitions occuring in Statement : 
image-space: f[X]
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
image-space: f[X]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
metric_wf, 
meq_wf
Rules used in proof : 
universeEquality, 
instantiate, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dY:metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].    (f[X]  \mmember{}  Type)
Date html generated:
2019_10_30-AM-06_34_09
Last ObjectModification:
2019_10_25-AM-11_04_49
Theory : reals
Home
Index