Nuprl Lemma : compact-mc_wf
∀[X:Type]. ∀d:metric(X). ∀c:mcompact(X;d). ∀f:FUN(X ⟶ ℝ).  (compact-mc{i:l}(d;c;f) ∈ UC(f:X ⟶ ℝ))
Proof
Definitions occuring in Statement : 
compact-mc: compact-mc{i:l}(d;c;f)
, 
mcompact: mcompact(X;d)
, 
m-unif-cont: UC(f:X ⟶ Y)
, 
mfun: FUN(X ⟶ Y)
, 
rmetric: rmetric()
, 
metric: metric(X)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
mfun: FUN(X ⟶ Y)
, 
subtype_rel: A ⊆r B
, 
compact-mc: compact-mc{i:l}(d;c;f)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
compact-metric-to-real-continuity, 
m-unif-cont_wf, 
rmetric_wf, 
real_wf, 
mfun_wf, 
mcompact_wf, 
metric_wf
Rules used in proof : 
universeEquality, 
functionIsTypeImplies, 
axiomEquality, 
dependent_functionElimination, 
because_Cache, 
instantiate, 
rename, 
setElimination, 
thin, 
sqequalHypSubstitution, 
extract_by_obid, 
universeIsType, 
functionIsType, 
inhabitedIsType, 
isectIsType, 
hypothesis, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
lambdaEquality_alt, 
applyEquality, 
sqequalRule, 
lambdaFormation_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}c:mcompact(X;d).  \mforall{}f:FUN(X  {}\mrightarrow{}  \mBbbR{}).    (compact-mc\{i:l\}(d;c;f)  \mmember{}  UC(f:X  {}\mrightarrow{}  \mBbbR{}))
Date html generated:
2019_10_30-AM-07_07_26
Last ObjectModification:
2019_10_25-PM-02_27_12
Theory : reals
Home
Index