Nuprl Lemma : compact-mc_wf

[X:Type]. ∀d:metric(X). ∀c:mcompact(X;d). ∀f:FUN(X ⟶ ℝ).  (compact-mc{i:l}(d;c;f) ∈ UC(f:X ⟶ ℝ))


Proof




Definitions occuring in Statement :  compact-mc: compact-mc{i:l}(d;c;f) mcompact: mcompact(X;d) m-unif-cont: UC(f:X ⟶ Y) mfun: FUN(X ⟶ Y) rmetric: rmetric() metric: metric(X) real: uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  prop: mfun: FUN(X ⟶ Y) subtype_rel: A ⊆B compact-mc: compact-mc{i:l}(d;c;f) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe compact-metric-to-real-continuity m-unif-cont_wf rmetric_wf real_wf mfun_wf mcompact_wf metric_wf
Rules used in proof :  universeEquality functionIsTypeImplies axiomEquality dependent_functionElimination because_Cache instantiate rename setElimination thin sqequalHypSubstitution extract_by_obid universeIsType functionIsType inhabitedIsType isectIsType hypothesis equalitySymmetry equalityTransitivity hypothesisEquality isectElimination lambdaEquality_alt applyEquality sqequalRule lambdaFormation_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}c:mcompact(X;d).  \mforall{}f:FUN(X  {}\mrightarrow{}  \mBbbR{}).    (compact-mc\{i:l\}(d;c;f)  \mmember{}  UC(f:X  {}\mrightarrow{}  \mBbbR{}))



Date html generated: 2019_10_30-AM-07_07_26
Last ObjectModification: 2019_10_25-PM-02_27_12

Theory : reals


Home Index