Nuprl Lemma : compact-dist-nonneg
∀[X:Type]. ∀[d:metric(X)]. ∀[A:Type].  ∀[c:mcompact(A;d)]. ∀[x:X].  (r0 ≤ dist(x;A)) supposing A ⊆r X
Proof
Definitions occuring in Statement : 
compact-dist: dist(x;A)
, 
mcompact: mcompact(X;d)
, 
metric: metric(X)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
dist-fun: dist-fun(d;x)
, 
top: Top
, 
false: False
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
compact-dist: dist(x;A)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real_term_value_add_lemma, 
req_weakening, 
rless_functionality, 
itermAdd_wf, 
radd_wf, 
rless_irreflexivity, 
mdist_wf, 
rless_transitivity1, 
mdist-nonneg, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
istype-void, 
real_term_value_sub_lemma, 
istype-int, 
real_polynomial_null, 
req-iff-rsub-is-0, 
itermMinus_wf, 
itermVar_wf, 
itermConstant_wf, 
itermSubtract_wf, 
rsub_wf, 
istype-universe, 
metric_wf, 
subtype_rel_wf, 
mcompact_wf, 
le_witness_for_triv, 
rless_wf, 
rless-implies-rless, 
rminus_wf, 
metric-on-subtype, 
compact-inf-property, 
int-to-real_wf, 
compact-dist_wf, 
not-rless, 
rmetric_wf, 
real_wf, 
mfun-subtype2, 
dist-fun_wf
Rules used in proof : 
equalityIstype, 
voidElimination, 
int_eqEquality, 
approximateComputation, 
universeEquality, 
instantiate, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
functionIsTypeImplies, 
lambdaEquality_alt, 
universeIsType, 
because_Cache, 
independent_functionElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
sqequalRule, 
independent_isectElimination, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:Type].
    \mforall{}[c:mcompact(A;d)].  \mforall{}[x:X].    (r0  \mleq{}  dist(x;A))  supposing  A  \msubseteq{}r  X
Date html generated:
2019_10_30-AM-07_12_42
Last ObjectModification:
2019_10_25-PM-04_56_23
Theory : reals
Home
Index