Step * 1 1 of Lemma compact-proper-interval-near-member


1. : ℝ
2. : ℝ
3. : ℝ
4. a ≤ x
5. x ≤ b
6. : ℝ
7. r0 < r
8. a < b
9. a < x
⊢ ∃y:ℝ(((a ≤ y) ∧ (y ≤ b)) ∧ (|y x| ≤ r) ∧ (r0 < |y x|))
BY
(Assert r0 < rmin(x a;r) BY
         (BLemma `rmin_strict_ub` THEN Auto THEN nRAdd ⌜a⌝ 0⋅ THEN Auto)) }

1
1. : ℝ
2. : ℝ
3. : ℝ
4. a ≤ x
5. x ≤ b
6. : ℝ
7. r0 < r
8. a < b
9. a < x
10. r0 < rmin(x a;r)
⊢ ∃y:ℝ(((a ≤ y) ∧ (y ≤ b)) ∧ (|y x| ≤ r) ∧ (r0 < |y x|))


Latex:


Latex:

1.  a  :  \mBbbR{}
2.  b  :  \mBbbR{}
3.  x  :  \mBbbR{}
4.  a  \mleq{}  x
5.  x  \mleq{}  b
6.  r  :  \mBbbR{}
7.  r0  <  r
8.  a  <  b
9.  a  <  x
\mvdash{}  \mexists{}y:\mBbbR{}.  (((a  \mleq{}  y)  \mwedge{}  (y  \mleq{}  b))  \mwedge{}  (|y  -  x|  \mleq{}  r)  \mwedge{}  (r0  <  |y  -  x|))


By


Latex:
(Assert  r0  <  rmin(x  -  a;r)  BY
              (BLemma  `rmin\_strict\_ub`  THEN  Auto  THEN  nRAdd  \mkleeneopen{}a\mkleeneclose{}  0\mcdot{}  THEN  Auto))




Home Index