Nuprl Lemma : compact-proper-interval-near-member

J:Interval
  (icompact(J)
   iproper(J)
   (∀x:ℝ((x ∈ J)  (∀r:ℝ((r0 < r)  (∃y:ℝ((y ∈ J) ∧ (|y x| ≤ r) ∧ (r0 < |y x|))))))))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-member: r ∈ I iproper: iproper(I) interval: Interval rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] interval: Interval iproper: iproper(I) icompact: icompact(I) i-finite: i-finite(I) i-closed: i-closed(I) i-nonvoid: i-nonvoid(I) isl: isl(x) outl: outl(x) bnot: ¬bb ifthenelse: if then else fi  btrue: tt assert: b bor: p ∨bq bfalse: ff i-member: r ∈ I right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) endpoints: endpoints(I) pi1: fst(t) pi2: snd(t) implies:  Q and: P ∧ Q cand: c∧ B true: True member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] false: False or: P ∨ Q iff: ⇐⇒ Q uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 not: ¬A top: Top uiff: uiff(P;Q) squash: T subtype_rel: A ⊆B guard: {T} rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rsub: y
Lemmas referenced :  rless_wf int-to-real_wf real_wf rleq_wf true_wf exists_wf false_wf interval_wf rless-cases rmin_strict_ub rsub_wf rless-implies-rless real_term_polynomial itermSubtract_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 itermMinus_wf rmin_wf real_term_value_minus_lemma rminus_wf rabs_wf squash_wf rabs-rminus iff_weakening_equal rmin-rleq rleq_weakening_rless rleq_functionality rabs_functionality req_weakening rless_functionality rabs-of-nonneg radd-preserves-rleq radd_wf itermAdd_wf real_term_value_add_lemma rmin_functionality rleq_weakening_equal rleq_functionality_wrt_implies trivial-rsub-rleq rmul_wf uiff_transitivity req_transitivity radd_functionality rminus-as-rmul req_inversion rmul-identity1 rmul-distrib2 radd-assoc rmul_functionality radd-int rmul-zero-both radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin unionElimination sqequalRule rename cut hypothesis independent_functionElimination natural_numberEquality independent_pairFormation because_Cache introduction extract_by_obid isectElimination hypothesisEquality productEquality functionEquality lambdaEquality voidElimination dependent_functionElimination independent_isectElimination computeAll int_eqEquality intEquality isect_memberEquality voidEquality dependent_pairFormation addLevel applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality addEquality minusEquality lemma_by_obid

Latex:
\mforall{}J:Interval
    (icompact(J)
    {}\mRightarrow{}  iproper(J)
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  J)  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  ((r0  <  r)  {}\mRightarrow{}  (\mexists{}y:\mBbbR{}.  ((y  \mmember{}  J)  \mwedge{}  (|y  -  x|  \mleq{}  r)  \mwedge{}  (r0  <  |y  -  x|))))))))



Date html generated: 2017_10_03-AM-09_35_11
Last ObjectModification: 2017_07_28-AM-07_52_47

Theory : reals


Home Index