Step
*
2
of Lemma
continuous-mul
1. I : Interval
2. f : I ⟶ℝ
3. g : I ⟶ℝ
4. rmax(|f[x]|;|g[x]|) continuous for x ∈ I
5. m : {m:ℕ+| icompact(i-approx(I;m))}
6. n : ℕ+
7. ∀n:ℕ+
(∃d:{ℝ| ((r0 < d)
∧ (∀x,y:ℝ.
((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r(n))))))})
8. ∀n:ℕ+
(∃d:{ℝ| ((r0 < d)
∧ (∀x,y:ℝ.
((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|g[x] - g[y]| ≤ (r1/r(n))))))})
9. ∃N:ℕ+. ∀[x:{r:ℝ| r ∈ i-approx(I;m)} ]. (rmax(|f[x]|;|g[x]|) ≤ r(N))
⊢ ∃d:{ℝ| ((r0 < d)
∧ (∀x,y:ℝ.
((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|(f[x] * g[x]) - f[y] * g[y]| ≤ (r1/r(n))))))}
BY
{ (D -1
THEN (Assert f ∈ i-approx(I;m) ⟶ℝ BY
Auto)
THEN (Assert g ∈ i-approx(I;m) ⟶ℝ BY
Auto)
THEN RepeatFor 2 (((InstHyp [⌜(2 * n) * N⌝] 7⋅ THENA Auto)
THEN Thin 7
THEN D -1
THEN (UnhideSqStableHyp (-1) THENA Auto)))) }
1
1. I : Interval
2. f : I ⟶ℝ
3. g : I ⟶ℝ
4. rmax(|f[x]|;|g[x]|) continuous for x ∈ I
5. m : {m:ℕ+| icompact(i-approx(I;m))}
6. n : ℕ+
7. N : ℕ+
8. ∀[x:{r:ℝ| r ∈ i-approx(I;m)} ]. (rmax(|f[x]|;|g[x]|) ≤ r(N))
9. f ∈ i-approx(I;m) ⟶ℝ
10. g ∈ i-approx(I;m) ⟶ℝ
11. d : ℝ
12. (r0 < d)
∧ (∀x,y:ℝ. ((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|f[x] - f[y]| ≤ (r1/r((2 * n) * N)))))
13. d1 : ℝ
14. (r0 < d1)
∧ (∀x,y:ℝ. ((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d1)
⇒ (|g[x] - g[y]| ≤ (r1/r((2 * n) * N)))))
⊢ ∃d:{ℝ| ((r0 < d)
∧ (∀x,y:ℝ.
((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|(f[x] * g[x]) - f[y] * g[y]| ≤ (r1/r(n))))))}
Latex:
Latex:
1. I : Interval
2. f : I {}\mrightarrow{}\mBbbR{}
3. g : I {}\mrightarrow{}\mBbbR{}
4. rmax(|f[x]|;|g[x]|) continuous for x \mmember{} I
5. m : \{m:\mBbbN{}\msupplus{}| icompact(i-approx(I;m))\}
6. n : \mBbbN{}\msupplus{}
7. \mforall{}n:\mBbbN{}\msupplus{}
(\mexists{}d:\{\mBbbR{}| ((r0 < d)
\mwedge{} (\mforall{}x,y:\mBbbR{}.
((x \mmember{} i-approx(I;m))
{}\mRightarrow{} (y \mmember{} i-approx(I;m))
{}\mRightarrow{} (|x - y| \mleq{} d)
{}\mRightarrow{} (|f[x] - f[y]| \mleq{} (r1/r(n))))))\})
8. \mforall{}n:\mBbbN{}\msupplus{}
(\mexists{}d:\{\mBbbR{}| ((r0 < d)
\mwedge{} (\mforall{}x,y:\mBbbR{}.
((x \mmember{} i-approx(I;m))
{}\mRightarrow{} (y \mmember{} i-approx(I;m))
{}\mRightarrow{} (|x - y| \mleq{} d)
{}\mRightarrow{} (|g[x] - g[y]| \mleq{} (r1/r(n))))))\})
9. \mexists{}N:\mBbbN{}\msupplus{}. \mforall{}[x:\{r:\mBbbR{}| r \mmember{} i-approx(I;m)\} ]. (rmax(|f[x]|;|g[x]|) \mleq{} r(N))
\mvdash{} \mexists{}d:\{\mBbbR{}| ((r0 < d)
\mwedge{} (\mforall{}x,y:\mBbbR{}.
((x \mmember{} i-approx(I;m))
{}\mRightarrow{} (y \mmember{} i-approx(I;m))
{}\mRightarrow{} (|x - y| \mleq{} d)
{}\mRightarrow{} (|(f[x] * g[x]) - f[y] * g[y]| \mleq{} (r1/r(n))))))\}
By
Latex:
(D -1
THEN (Assert f \mmember{} i-approx(I;m) {}\mrightarrow{}\mBbbR{} BY
Auto)
THEN (Assert g \mmember{} i-approx(I;m) {}\mrightarrow{}\mBbbR{} BY
Auto)
THEN RepeatFor 2 (((InstHyp [\mkleeneopen{}(2 * n) * N\mkleeneclose{}] 7\mcdot{} THENA Auto)
THEN Thin 7
THEN D -1
THEN (UnhideSqStableHyp (-1) THENA Auto))))
Home
Index