Nuprl Lemma : continuous-mul

I:Interval. ∀f,g:I ⟶ℝ.  (f[x] continuous for x ∈  g[x] continuous for x ∈  f[x] g[x] continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rmul: b so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q continuous: f[x] continuous for x ∈ I member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ nat_plus: + subtype_rel: A ⊆B uimplies: supposing a guard: {T} exists: x:A. B[x] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A false: False rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y less_than: a < b squash: T less_than': less_than'(a;b) true: True sq_exists: x:{A| B[x]} rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_stable: SqStable(P) cand: c∧ B uiff: uiff(P;Q) real: nequal: a ≠ b ∈ 
Lemmas referenced :  nat_plus_wf set_wf icompact_wf i-approx_wf continuous_wf i-member_wf real_wf rfun_wf interval_wf rabs_wf continuous-max continuous-abs continuous_functionality_wrt_subinterval rmax_wf less_than_wf i-approx-is-subinterval rfun_subtype Inorm-bound r-bound_wf Inorm_wf less_than'_wf rsub_wf int-to-real_wf uall_wf rleq_wf r-bound-property rabs-bounds rleq_functionality_wrt_implies rleq_weakening_equal mul_nat_plus rless_wf all_wf rdiv_wf rless-int multiply_nat_plus nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermMultiply_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf squash_wf sq_stable__and sq_stable__rless sq_stable__all sq_stable__rleq rmin_wf rmul_wf rmin_strict_ub radd_wf r-triangle-inequality2 zero-rleq-rabs rmul_functionality_wrt_rleq rmin-rleq rleq_functionality req_inversion rabs-rmul req_weakening radd_functionality rabs_functionality rmul-rsub-distrib rleq-rmax radd_functionality_wrt_rleq rmul_comm rleq-int-fractions2 sq_stable__less_than sq_stable__icompact decidable__le intformle_wf int_formula_prop_le_lemma rleq_transitivity rneq-int int_entire_a equal-wf-base int_subtype_base equal-wf-T-base rmul_functionality_wrt_rleq2 req_transitivity rmul-distrib2 rmul_functionality radd-rdiv rdiv_functionality radd-int rmul_preserves_rleq mul_bounds_1b req_wf uiff_transitivity req_functionality rmul-assoc rmul-ac rmul-rdiv-cancel rmul-int rmul-int-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut promote_hyp sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality introduction extract_by_obid hypothesis isectElimination sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberEquality setEquality because_Cache independent_functionElimination natural_numberEquality independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation isect_memberFormation productElimination independent_pairEquality voidElimination minusEquality axiomEquality independent_pairFormation imageMemberEquality baseClosed isect_memberEquality functionEquality multiplyEquality inrFormation applyLambdaEquality unionElimination int_eqEquality intEquality voidEquality computeAll imageElimination dependent_set_memberFormation productEquality inlFormation addEquality baseApply closedConclusion

Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]  *  g[x]  continuous  for  x  \mmember{}  I)



Date html generated: 2017_10_03-AM-10_26_27
Last ObjectModification: 2017_07_28-AM-08_10_31

Theory : reals


Home Index