Nuprl Lemma : cover-seq-property-ext

[A,B:ℝ ⟶ ℙ].
  ∀d:r:ℝ ⟶ (A[r] B[r]). ∀a,b:ℝ.
    (A[a]
     B[b]
     (∀n:ℕ
          (A[fst(cover-seq(d;a;b;n))]
          ∧ B[snd(cover-seq(d;a;b;n))]
          ∧ ((cover-seq(d;a;b;n 1) let a,b cover-seq(d;a;b;n) in <a, (a b/r(2))> ∈ (ℝ × ℝ))
            ∨ (cover-seq(d;a;b;n 1) let a,b cover-seq(d;a;b;n) in <(a b/r(2)), b> ∈ (ℝ × ℝ))))))


Proof




Definitions occuring in Statement :  cover-seq: cover-seq(d;a;b;n) rdiv: (x/y) radd: b int-to-real: r(n) real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] spread: spread def pair: <a, b> product: x:A × B[x] union: left right add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T cover-seq-property subtract: m spreadn: spread3 ifthenelse: if then else fi 
Lemmas referenced :  cover-seq-property
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}d:r:\mBbbR{}  {}\mrightarrow{}  (A[r]  +  B[r]).  \mforall{}a,b:\mBbbR{}.
        (A[a]
        {}\mRightarrow{}  B[b]
        {}\mRightarrow{}  (\mforall{}n:\mBbbN{}
                    (A[fst(cover-seq(d;a;b;n))]
                    \mwedge{}  B[snd(cover-seq(d;a;b;n))]
                    \mwedge{}  ((cover-seq(d;a;b;n  +  1)  =  let  a,b  =  cover-seq(d;a;b;n)  in  <a,  (a  +  b/r(2))>)
                        \mvee{}  (cover-seq(d;a;b;n  +  1)  =  let  a,b  =  cover-seq(d;a;b;n)  in  <(a  +  b/r(2)),  b>)))))



Date html generated: 2017_10_03-AM-10_03_33
Last ObjectModification: 2017_07_06-AM-11_19_41

Theory : reals


Home Index