Nuprl Lemma : cover-seq-property

[A,B:ℝ ⟶ ℙ].
  ∀d:r:ℝ ⟶ (A[r] B[r]). ∀a,b:ℝ.
    (A[a]
     B[b]
     (∀n:ℕ
          (A[fst(cover-seq(d;a;b;n))]
          ∧ B[snd(cover-seq(d;a;b;n))]
          ∧ ((cover-seq(d;a;b;n 1) let a,b cover-seq(d;a;b;n) in <a, (a b/r(2))> ∈ (ℝ × ℝ))
            ∨ (cover-seq(d;a;b;n 1) let a,b cover-seq(d;a;b;n) in <(a b/r(2)), b> ∈ (ℝ × ℝ))))))


Proof




Definitions occuring in Statement :  cover-seq: cover-seq(d;a;b;n) rdiv: (x/y) radd: b int-to-real: r(n) real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] spread: spread def pair: <a, b> product: x:A × B[x] union: left right add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q cover-seq: cover-seq(d;a;b;n) member: t ∈ T top: Top primrec: primrec(n;b;c) pi1: fst(t) pi2: snd(t) uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: so_apply: x[s] subtype_rel: A ⊆B cand: c∧ B so_lambda: λ2x.t[x] nat: decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False ge: i ≥  nequal: a ≠ b ∈  sq_type: SQType(T) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  primrec0_lemma primrec1_lemma real_wf rdiv_wf radd_wf int-to-real_wf rless-int rless_wf equal_wf cover-seq_wf subtract_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf pi1_wf_top pi2_wf or_wf subtract-add-cancel set_wf less_than_wf primrec-wf2 nat_properties itermAdd_wf int_term_value_add_lemma nat_wf primrec-unroll subtype_base_sq bool_wf bool_subtype_base squash_wf true_wf eq_int_eq_false intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base bfalse_wf iff_weakening_equal and_wf subtype_rel_product top_wf add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis applyEquality functionExtensionality hypothesisEquality isectElimination natural_numberEquality independent_isectElimination inrFormation because_Cache productElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed unionEquality unionElimination independent_pairEquality productEquality inlFormation equalityTransitivity equalitySymmetry rename setElimination dependent_set_memberEquality approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality addEquality functionEquality universeEquality cumulativity instantiate imageElimination addLevel hyp_replacement applyLambdaEquality levelHypothesis baseApply closedConclusion

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}d:r:\mBbbR{}  {}\mrightarrow{}  (A[r]  +  B[r]).  \mforall{}a,b:\mBbbR{}.
        (A[a]
        {}\mRightarrow{}  B[b]
        {}\mRightarrow{}  (\mforall{}n:\mBbbN{}
                    (A[fst(cover-seq(d;a;b;n))]
                    \mwedge{}  B[snd(cover-seq(d;a;b;n))]
                    \mwedge{}  ((cover-seq(d;a;b;n  +  1)  =  let  a,b  =  cover-seq(d;a;b;n)  in  <a,  (a  +  b/r(2))>)
                        \mvee{}  (cover-seq(d;a;b;n  +  1)  =  let  a,b  =  cover-seq(d;a;b;n)  in  <(a  +  b/r(2)),  b>)))))



Date html generated: 2017_10_03-AM-10_03_20
Last ObjectModification: 2017_07_06-AM-11_11_16

Theory : reals


Home Index