Nuprl Lemma : cover-seq-property
∀[A,B:ℝ ⟶ ℙ].
  ∀d:r:ℝ ⟶ (A[r] + B[r]). ∀a,b:ℝ.
    (A[a]
    
⇒ B[b]
    
⇒ (∀n:ℕ
          (A[fst(cover-seq(d;a;b;n))]
          ∧ B[snd(cover-seq(d;a;b;n))]
          ∧ ((cover-seq(d;a;b;n + 1) = let a,b = cover-seq(d;a;b;n) in <a, (a + b/r(2))> ∈ (ℝ × ℝ))
            ∨ (cover-seq(d;a;b;n + 1) = let a,b = cover-seq(d;a;b;n) in <(a + b/r(2)), b> ∈ (ℝ × ℝ))))))
Proof
Definitions occuring in Statement : 
cover-seq: cover-seq(d;a;b;n)
, 
rdiv: (x/y)
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
pair: <a, b>
, 
product: x:A × B[x]
, 
union: left + right
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cover-seq: cover-seq(d;a;b;n)
, 
member: t ∈ T
, 
top: Top
, 
primrec: primrec(n;b;c)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
primrec0_lemma, 
primrec1_lemma, 
real_wf, 
rdiv_wf, 
radd_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
equal_wf, 
cover-seq_wf, 
subtract_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
pi1_wf_top, 
pi2_wf, 
or_wf, 
subtract-add-cancel, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
primrec-unroll, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
squash_wf, 
true_wf, 
eq_int_eq_false, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
bfalse_wf, 
iff_weakening_equal, 
and_wf, 
subtype_rel_product, 
top_wf, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
unionEquality, 
unionElimination, 
independent_pairEquality, 
productEquality, 
inlFormation, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
setElimination, 
dependent_set_memberEquality, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
addEquality, 
functionEquality, 
universeEquality, 
cumulativity, 
instantiate, 
imageElimination, 
addLevel, 
hyp_replacement, 
applyLambdaEquality, 
levelHypothesis, 
baseApply, 
closedConclusion
Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}d:r:\mBbbR{}  {}\mrightarrow{}  (A[r]  +  B[r]).  \mforall{}a,b:\mBbbR{}.
        (A[a]
        {}\mRightarrow{}  B[b]
        {}\mRightarrow{}  (\mforall{}n:\mBbbN{}
                    (A[fst(cover-seq(d;a;b;n))]
                    \mwedge{}  B[snd(cover-seq(d;a;b;n))]
                    \mwedge{}  ((cover-seq(d;a;b;n  +  1)  =  let  a,b  =  cover-seq(d;a;b;n)  in  <a,  (a  +  b/r(2))>)
                        \mvee{}  (cover-seq(d;a;b;n  +  1)  =  let  a,b  =  cover-seq(d;a;b;n)  in  <(a  +  b/r(2)),  b>)))))
Date html generated:
2017_10_03-AM-10_03_20
Last ObjectModification:
2017_07_06-AM-11_11_16
Theory : reals
Home
Index