Nuprl Lemma : cover-seq_wf

[A,B:ℝ ⟶ ℙ]. ∀[d:r:ℝ ⟶ (A[r] B[r])]. ∀[a,b:ℝ]. ∀[n:ℕ].  (cover-seq(d;a;b;n) ∈ ℝ × ℝ)


Proof




Definitions occuring in Statement :  cover-seq: cover-seq(d;a;b;n) real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cover-seq: cover-seq(d;a;b;n) uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: so_apply: x[s] subtype_rel: A ⊆B nat:
Lemmas referenced :  primrec_wf real_wf rdiv_wf radd_wf int-to-real_wf rless-int rless_wf equal_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesis because_Cache hypothesisEquality independent_pairEquality lambdaEquality productElimination applyEquality functionExtensionality natural_numberEquality independent_isectElimination inrFormation dependent_functionElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed unionEquality lambdaFormation unionElimination equalityTransitivity equalitySymmetry setElimination rename axiomEquality isect_memberEquality functionEquality universeEquality cumulativity

Latex:
\mforall{}[A,B:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:r:\mBbbR{}  {}\mrightarrow{}  (A[r]  +  B[r])].  \mforall{}[a,b:\mBbbR{}].  \mforall{}[n:\mBbbN{}].    (cover-seq(d;a;b;n)  \mmember{}  \mBbbR{}  \mtimes{}  \mBbbR{})



Date html generated: 2017_10_03-AM-10_02_48
Last ObjectModification: 2017_07_06-AM-10_51_53

Theory : reals


Home Index