Step
*
1
1
1
of Lemma
decidable-equality-implies-discrete
1. T : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. d : EqDecider(T)
4. f : ℝ ⟶ T
5. ∀x,y:ℝ. ((x = y)
⇒ ((f x) = (f y) ∈ T))
6. x : ℝ
7. y : ℝ
8. ∀x@0,y:ℝ. (if d (f x@0) (f x) then 0 else 1 fi = if d (f y) (f x) then 0 else 1 fi ∈ ℤ)
9. if d (f x) (f x) then 0 else 1 fi = if d (f y) (f x) then 0 else 1 fi ∈ ℤ
⊢ (f x) = (f y) ∈ T
BY
{ ((SplitOnHypITE -1 THENA Auto) THENL [(SplitOnHypITE -2 THEN Auto); (D -1 THEN Auto)]) }
Latex:
Latex:
1. T : Type
2. \mforall{}x,y:T. Dec(x = y)
3. d : EqDecider(T)
4. f : \mBbbR{} {}\mrightarrow{} T
5. \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} ((f x) = (f y)))
6. x : \mBbbR{}
7. y : \mBbbR{}
8. \mforall{}x@0,y:\mBbbR{}. (if d (f x@0) (f x) then 0 else 1 fi = if d (f y) (f x) then 0 else 1 fi )
9. if d (f x) (f x) then 0 else 1 fi = if d (f y) (f x) then 0 else 1 fi
\mvdash{} (f x) = (f y)
By
Latex:
((SplitOnHypITE -1 THENA Auto) THENL [(SplitOnHypITE -2 THEN Auto); (D -1 THEN Auto)])
Home
Index