Nuprl Lemma : decidable-equality-implies-discrete

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  discrete-type(T))


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q discrete-type: discrete-type(T) all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] deq: EqDecider(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a eqof: eqof(d) bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A true: True
Lemmas referenced :  deq-exists real_wf all_wf req_wf equal_wf decidable_wf int-discrete ifthenelse_wf bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_subtype_base assert_wf bnot_wf eqof_wf not_wf bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis rename sqequalRule lambdaEquality functionEquality cumulativity applyEquality functionExtensionality dependent_functionElimination axiomEquality universeEquality setElimination intEquality natural_numberEquality because_Cache unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate voidElimination hyp_replacement applyLambdaEquality independent_pairFormation impliesFunctionality

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  discrete-type(T))



Date html generated: 2018_05_22-PM-02_13_55
Last ObjectModification: 2017_10_27-PM-05_04_16

Theory : reals


Home Index