Nuprl Lemma : decidable-equality-implies-discrete
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ discrete-type(T))
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
discrete-type: discrete-type(T)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
eqof: eqof(d)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
true: True
Lemmas referenced : 
deq-exists, 
real_wf, 
all_wf, 
req_wf, 
equal_wf, 
decidable_wf, 
int-discrete, 
ifthenelse_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
eqof_wf, 
not_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
rename, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
dependent_functionElimination, 
axiomEquality, 
universeEquality, 
setElimination, 
intEquality, 
natural_numberEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
voidElimination, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairFormation, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  discrete-type(T))
Date html generated:
2018_05_22-PM-02_13_55
Last ObjectModification:
2017_10_27-PM-05_04_16
Theory : reals
Home
Index