Nuprl Lemma : int-discrete
discrete-type(ℤ)
Proof
Definitions occuring in Statement : 
discrete-type: discrete-type(T)
, 
int: ℤ
Definitions unfolded in proof : 
discrete-type: discrete-type(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
top: Top
, 
and: P ∧ Q
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
extensional-discrete-real-fun-is-constant, 
rmin_wf, 
rmax_wf, 
subtype_rel_dep_function, 
real_wf, 
i-member_wf, 
rccint_wf, 
member_rccint_lemma, 
rleq_wf, 
subtype_rel_self, 
set_wf, 
req_wf, 
all_wf, 
equal_wf, 
rmin-rleq, 
rleq-rmax
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
intEquality, 
setEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
productEquality, 
functionEquality, 
functionExtensionality, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
independent_functionElimination
Latex:
discrete-type(\mBbbZ{})
Date html generated:
2018_05_22-PM-02_13_41
Last ObjectModification:
2017_10_27-PM-01_21_59
Theory : reals
Home
Index