Nuprl Lemma : int-discrete

discrete-type(ℤ)


Proof




Definitions occuring in Statement :  discrete-type: discrete-type(T) int:
Definitions unfolded in proof :  discrete-type: discrete-type(T) all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a top: Top and: P ∧ Q guard: {T} cand: c∧ B
Lemmas referenced :  extensional-discrete-real-fun-is-constant rmin_wf rmax_wf subtype_rel_dep_function real_wf i-member_wf rccint_wf member_rccint_lemma rleq_wf subtype_rel_self set_wf req_wf all_wf equal_wf rmin-rleq rleq-rmax
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality applyEquality sqequalRule lambdaEquality intEquality setEquality independent_isectElimination isect_memberEquality voidElimination voidEquality setElimination rename productEquality functionEquality functionExtensionality productElimination independent_pairFormation dependent_set_memberEquality independent_functionElimination

Latex:
discrete-type(\mBbbZ{})



Date html generated: 2018_05_22-PM-02_13_41
Last ObjectModification: 2017_10_27-PM-01_21_59

Theory : reals


Home Index