Step
*
1
1
of Lemma
dot-product-split-last
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
4. x⋅y = (x⋅y + Σ{(x ((n - 1) + i)) * (y ((n - 1) + i)) | 0≤i≤0})
⊢ x⋅y = (x⋅y + ((x (n - 1)) * (y (n - 1))))
BY
{ (RWO "rsum-single" (-1) THENA Auto) }
1
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
4. x⋅y = (x⋅y + ((x ((n - 1) + 0)) * (y ((n - 1) + 0))))
⊢ x⋅y = (x⋅y + ((x (n - 1)) * (y (n - 1))))
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. x\mcdot{}y = (x\mcdot{}y + \mSigma{}\{(x ((n - 1) + i)) * (y ((n - 1) + i)) | 0\mleq{}i\mleq{}0\})
\mvdash{} x\mcdot{}y = (x\mcdot{}y + ((x (n - 1)) * (y (n - 1))))
By
Latex:
(RWO "rsum-single" (-1) THENA Auto)
Home
Index