Nuprl Lemma : dot-product-split-last

[n:ℕ+]. ∀[x,y:ℝ^n].  (x⋅(x⋅((x (n 1)) (y (n 1)))))


Proof




Definitions occuring in Statement :  dot-product: x⋅y real-vec: ^n req: y rmul: b radd: b nat_plus: + uall: [x:A]. B[x] apply: a subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B int_seg: {i..j-} nat_plus: + lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: nat: real-vec: ^n sq_stable: SqStable(P) squash: T dot-product: x⋅y sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] uiff: uiff(P;Q) so_apply: x[s]
Lemmas referenced :  dot-product-split nat_plus_subtype_nat subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt istype-le istype-less_than sq_stable__req dot-product_wf radd_wf real-vec-subtype rmul_wf real-vec_wf nat_plus_wf subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma rsum_wf add-member-int_seg1 itermAdd_wf int_term_value_add_lemma int_seg_wf req_functionality req_weakening radd_functionality rsum-single add-zero
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule dependent_set_memberEquality_alt setElimination rename natural_numberEquality independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType because_Cache imageMemberEquality baseClosed imageElimination inhabitedIsType instantiate cumulativity intEquality equalityTransitivity equalitySymmetry closedConclusion productElimination addEquality setIsType equalityIstype baseApply sqequalBase

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (x\mcdot{}y  =  (x\mcdot{}y  +  ((x  (n  -  1))  *  (y  (n  -  1)))))



Date html generated: 2019_10_30-AM-08_05_47
Last ObjectModification: 2019_07_01-AM-10_46_45

Theory : reals


Home Index