Step
*
2
1
1
of Lemma
first-m-not-reg-property
1. X : Type
2. d : metric(X)
3. k : ℕ
4. s : ℕk ⟶ X
5. (∃i:ℕk. (↑m-not-reg(d;s;i)))
⇒ 0 < first-m-not-reg(d;s;k)
6. (∃i:ℕk. (↑m-not-reg(d;s;i)))
⇐ 0 < first-m-not-reg(d;s;k)
7. 0 < first-m-not-reg(d;s;k)
8. i : ℕk
9. (first-m-not-reg(d;s;k) - 1) = i ∈ ℕk
10. ↑m-not-reg(d;s;i)
11. ∀j:ℕk. ¬↑m-not-reg(d;s;j) supposing j < i
12. n : ℕi
⊢ m-not-reg(d;s;n) = ff
BY
{ (InstHyp [⌜n⌝] (-2)⋅ THEN Auto) }
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. k : \mBbbN{}
4. s : \mBbbN{}k {}\mrightarrow{} X
5. (\mexists{}i:\mBbbN{}k. (\muparrow{}m-not-reg(d;s;i))) {}\mRightarrow{} 0 < first-m-not-reg(d;s;k)
6. (\mexists{}i:\mBbbN{}k. (\muparrow{}m-not-reg(d;s;i))) \mLeftarrow{}{} 0 < first-m-not-reg(d;s;k)
7. 0 < first-m-not-reg(d;s;k)
8. i : \mBbbN{}k
9. (first-m-not-reg(d;s;k) - 1) = i
10. \muparrow{}m-not-reg(d;s;i)
11. \mforall{}j:\mBbbN{}k. \mneg{}\muparrow{}m-not-reg(d;s;j) supposing j < i
12. n : \mBbbN{}i
\mvdash{} m-not-reg(d;s;n) = ff
By
Latex:
(InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-2)\mcdot{} THEN Auto)
Home
Index