Step
*
1
of Lemma
fun-converges-to-continuous
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. g : I ⟶ℝ
4. m : {m:ℕ+| icompact(i-approx(I;m))} @i
5. n : ℕ+@i
6. N : ℕ+@i
7. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n@0:{N...}. (|f[n@0;x] - g[x]| ≤ (r1/r(3 * n)))@i
8. d : ℝ
9. r0 < d
10. ∀x,y:ℝ. ((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|f[N;x] - f[N;y]| ≤ (r1/r(3 * n))))
11. r0 < d
12. y : ℝ@i
13. y@0 : ℝ@i
14. y ∈ i-approx(I;m)@i
15. y@0 ∈ i-approx(I;m)@i
16. |y - y@0| ≤ d@i
17. y@0 ∈ I
18. y ∈ I
⊢ |g[y] - g[y@0]| ≤ (r1/r(n))
BY
{ (RenameVar `x' 13 THEN UseTriangleInequality [⌜f[N;y]⌝;⌜f[N;x]⌝]⋅) }
1
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. g : I ⟶ℝ
4. m : {m:ℕ+| icompact(i-approx(I;m))} @i
5. n : ℕ+@i
6. N : ℕ+@i
7. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n@0:{N...}. (|f[n@0;x] - g[x]| ≤ (r1/r(3 * n)))@i
8. d : ℝ
9. r0 < d
10. ∀x,y:ℝ. ((x ∈ i-approx(I;m))
⇒ (y ∈ i-approx(I;m))
⇒ (|x - y| ≤ d)
⇒ (|f[N;x] - f[N;y]| ≤ (r1/r(3 * n))))
11. r0 < d
12. y : ℝ@i
13. x : ℝ@i
14. y ∈ i-approx(I;m)@i
15. x ∈ i-approx(I;m)@i
16. |y - x| ≤ d@i
17. x ∈ I
18. y ∈ I
⊢ (|g[y] - f[N;y]| + |f[N;y] - f[N;x]| + |f[N;x] - g[x]|) ≤ (r1/r(n))
Latex:
Latex:
1. I : Interval
2. f : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. g : I {}\mrightarrow{}\mBbbR{}
4. m : \{m:\mBbbN{}\msupplus{}| icompact(i-approx(I;m))\} @i
5. n : \mBbbN{}\msupplus{}@i
6. N : \mBbbN{}\msupplus{}@i
7. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;m)\} . \mforall{}n@0:\{N...\}. (|f[n@0;x] - g[x]| \mleq{} (r1/r(3 * n)))@i
8. d : \mBbbR{}
9. r0 < d
10. \mforall{}x,y:\mBbbR{}.
((x \mmember{} i-approx(I;m))
{}\mRightarrow{} (y \mmember{} i-approx(I;m))
{}\mRightarrow{} (|x - y| \mleq{} d)
{}\mRightarrow{} (|f[N;x] - f[N;y]| \mleq{} (r1/r(3 * n))))
11. r0 < d
12. y : \mBbbR{}@i
13. y@0 : \mBbbR{}@i
14. y \mmember{} i-approx(I;m)@i
15. y@0 \mmember{} i-approx(I;m)@i
16. |y - y@0| \mleq{} d@i
17. y@0 \mmember{} I
18. y \mmember{} I
\mvdash{} |g[y] - g[y@0]| \mleq{} (r1/r(n))
By
Latex:
(RenameVar `x' 13 THEN UseTriangleInequality [\mkleeneopen{}f[N;y]\mkleeneclose{};\mkleeneopen{}f[N;x]\mkleeneclose{}]\mcdot{})
Home
Index