Nuprl Lemma : fun-converges-to-continuous

[I:Interval]. ∀[f:ℕ ⟶ I ⟶ℝ]. ∀[g:I ⟶ℝ].
  (lim n→∞.f[n;x] = λy.g[y] for x ∈  (∀n:ℕf[n;x] continuous for x ∈ I)  g[y] continuous for y ∈ I)


Proof




Definitions occuring in Statement :  fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval nat: uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q continuous: f[x] continuous for x ∈ I all: x:A. B[x] fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: exists: x:A. B[x] subtype_rel: A ⊆B sq_exists: x:{A| B[x]} cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] rfun: I ⟶ℝ uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top label: ...$L... t so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y int_upper: {i...} real: sq_stable: SqStable(P) uiff: uiff(P;Q)
Lemmas referenced :  radd-int rdiv_functionality radd-rdiv req_transitivity uiff_transitivity int_term_value_add_lemma itermAdd_wf rleq-int-fractions rabs-difference-symmetry req_weakening radd_functionality rleq_functionality le_wf int_formula_prop_le_lemma intformle_wf decidable__le sq_stable__icompact sq_stable__less_than int_term_value_mul_lemma itermMultiply_wf radd_functionality_wrt_rleq r-triangle-inequality2 rleq_weakening_equal rleq_functionality_wrt_implies radd_wf uimplies_transitivity interval_wf fun-converges-to_wf rfun_wf continuous_wf icompact_wf set_wf nat_plus_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int rdiv_wf real_wf all_wf int-to-real_wf rless_wf i-approx_wf i-member_wf rsub_wf rabs_wf rleq_wf i-member-approx nat_plus_subtype_nat less_than_wf mul_nat_plus nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality cut hypothesis because_Cache lemma_by_obid isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality baseClosed productElimination applyEquality setElimination rename independent_functionElimination productEquality lambdaEquality functionEquality independent_isectElimination inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll setEquality equalityTransitivity equalitySymmetry multiplyEquality addEquality imageElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[g:I  {}\mrightarrow{}\mBbbR{}].
    (lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.g[y]  for  x  \mmember{}  I
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  f[n;x]  continuous  for  x  \mmember{}  I)
    {}\mRightarrow{}  g[y]  continuous  for  y  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_52_47
Last ObjectModification: 2016_01_17-AM-02_54_59

Theory : reals


Home Index