Nuprl Lemma : fun-converges-to-continuous
∀[I:Interval]. ∀[f:ℕ ⟶ I ⟶ℝ]. ∀[g:I ⟶ℝ].
  (lim n→∞.f[n;x] = λy.g[y] for x ∈ I 
⇒ (∀n:ℕ. f[n;x] continuous for x ∈ I) 
⇒ g[y] continuous for y ∈ I)
Proof
Definitions occuring in Statement : 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
continuous: f[x] continuous for x ∈ I
, 
all: ∀x:A. B[x]
, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
sq_exists: ∃x:{A| B[x]}
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
label: ...$L... t
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
int_upper: {i...}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
radd-int, 
rdiv_functionality, 
radd-rdiv, 
req_transitivity, 
uiff_transitivity, 
int_term_value_add_lemma, 
itermAdd_wf, 
rleq-int-fractions, 
rabs-difference-symmetry, 
req_weakening, 
radd_functionality, 
rleq_functionality, 
le_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
sq_stable__icompact, 
sq_stable__less_than, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
radd_functionality_wrt_rleq, 
r-triangle-inequality2, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
radd_wf, 
uimplies_transitivity, 
interval_wf, 
fun-converges-to_wf, 
rfun_wf, 
continuous_wf, 
icompact_wf, 
set_wf, 
nat_plus_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
real_wf, 
all_wf, 
int-to-real_wf, 
rless_wf, 
i-approx_wf, 
i-member_wf, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
i-member-approx, 
nat_plus_subtype_nat, 
less_than_wf, 
mul_nat_plus, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
cut, 
hypothesis, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
productElimination, 
applyEquality, 
setElimination, 
rename, 
independent_functionElimination, 
productEquality, 
lambdaEquality, 
functionEquality, 
independent_isectElimination, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
addEquality, 
imageElimination
Latex:
\mforall{}[I:Interval].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[g:I  {}\mrightarrow{}\mBbbR{}].
    (lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.g[y]  for  x  \mmember{}  I
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  f[n;x]  continuous  for  x  \mmember{}  I)
    {}\mRightarrow{}  g[y]  continuous  for  y  \mmember{}  I)
Date html generated:
2016_05_18-AM-09_52_47
Last ObjectModification:
2016_01_17-AM-02_54_59
Theory : reals
Home
Index