Nuprl Lemma : i-finite-approx
∀n,m:ℕ+. ∀I:Interval.  (i-finite(i-approx(I;n)) 
⇐⇒ i-finite(i-approx(I;m)))
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n)
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
interval: Interval
, 
i-approx: i-approx(I;n)
, 
i-finite: i-finite(I)
, 
rccint: [l, u]
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
real: ℝ
Lemmas referenced : 
true_wf, 
interval_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
setElimination, 
rename
Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.  \mforall{}I:Interval.    (i-finite(i-approx(I;n))  \mLeftarrow{}{}\mRightarrow{}  i-finite(i-approx(I;m)))
Date html generated:
2016_10_26-AM-09_29_36
Last ObjectModification:
2016_08_22-PM-09_27_41
Theory : reals
Home
Index