Nuprl Lemma : i-finite-approx

n,m:ℕ+. ∀I:Interval.  (i-finite(i-approx(I;n)) ⇐⇒ i-finite(i-approx(I;m)))


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) i-finite: i-finite(I) interval: Interval nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] interval: Interval i-approx: i-approx(I;n) i-finite: i-finite(I) rccint: [l, u] isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True member: t ∈ T prop: rev_implies:  Q real:
Lemmas referenced :  true_wf interval_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin unionElimination sqequalRule independent_pairFormation natural_numberEquality productEquality cut introduction extract_by_obid hypothesis because_Cache setElimination rename

Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.  \mforall{}I:Interval.    (i-finite(i-approx(I;n))  \mLeftarrow{}{}\mRightarrow{}  i-finite(i-approx(I;m)))



Date html generated: 2016_10_26-AM-09_29_36
Last ObjectModification: 2016_08_22-PM-09_27_41

Theory : reals


Home Index