Nuprl Lemma : i-finite-approx
∀n,m:ℕ+. ∀I:Interval.  (i-finite(i-approx(I;n)) ⇐⇒ i-finite(i-approx(I;m)))
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n), 
i-finite: i-finite(I), 
interval: Interval, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
interval: Interval, 
i-approx: i-approx(I;n), 
i-finite: i-finite(I), 
rccint: [l, u], 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
true: True, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
real: ℝ
Lemmas referenced : 
true_wf, 
interval_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
setElimination, 
rename
Latex:
\mforall{}n,m:\mBbbN{}\msupplus{}.  \mforall{}I:Interval.    (i-finite(i-approx(I;n))  \mLeftarrow{}{}\mRightarrow{}  i-finite(i-approx(I;m)))
 Date html generated: 
2016_10_26-AM-09_29_36
 Last ObjectModification: 
2016_08_22-PM-09_27_41
Theory : reals
Home
Index