Step
*
of Lemma
implies-close-reals
∀[x,y:ℝ]. ∀[m:ℕ+]. ∀[k:ℕ]. ((|(x m) - y m| ≤ (2 * k))
⇒ (|x - y| ≤ (r(2 + k)/r(m))))
BY
{ ((Auto
THEN (InstLemma `rational-approx-property` [⌜x⌝;⌜m⌝]⋅ THENA Auto)
THEN (InstLemma `rational-approx-property` [⌜y⌝;⌜m⌝]⋅ THENA Auto))
THEN (Assert ⌜|(x within 1/m) - (y within 1/m)| ≤ (r(k)/r(m))⌝⋅
THENM UseTriangleInequality [⌜(x within 1/m)⌝;⌜(y within 1/m)⌝]⋅
)
) }
1
.....assertion.....
1. x : ℝ
2. y : ℝ
3. m : ℕ+
4. k : ℕ
5. |(x m) - y m| ≤ (2 * k)
6. |x - (x within 1/m)| ≤ (r1/r(m))
7. |y - (y within 1/m)| ≤ (r1/r(m))
⊢ |(x within 1/m) - (y within 1/m)| ≤ (r(k)/r(m))
2
1. x : ℝ
2. y : ℝ
3. m : ℕ+
4. k : ℕ
5. |(x m) - y m| ≤ (2 * k)
6. |x - (x within 1/m)| ≤ (r1/r(m))
7. |(y within 1/m) - y| ≤ (r1/r(m))
8. |(x within 1/m) - (y within 1/m)| ≤ (r(k)/r(m))
⊢ ((r1/r(m)) + (r(k)/r(m)) + (r1/r(m))) ≤ (r(2 + k)/r(m))
Latex:
Latex:
\mforall{}[x,y:\mBbbR{}]. \mforall{}[m:\mBbbN{}\msupplus{}]. \mforall{}[k:\mBbbN{}]. ((|(x m) - y m| \mleq{} (2 * k)) {}\mRightarrow{} (|x - y| \mleq{} (r(2 + k)/r(m))))
By
Latex:
((Auto
THEN (InstLemma `rational-approx-property` [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `rational-approx-property` [\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{}]\mcdot{} THENA Auto))
THEN (Assert \mkleeneopen{}|(x within 1/m) - (y within 1/m)| \mleq{} (r(k)/r(m))\mkleeneclose{}\mcdot{}
THENM UseTriangleInequality [\mkleeneopen{}(x within 1/m)\mkleeneclose{};\mkleeneopen{}(y within 1/m)\mkleeneclose{}]\mcdot{}
)
)
Home
Index