Nuprl Lemma : implies-close-reals
∀[x,y:ℝ]. ∀[m:ℕ+]. ∀[k:ℕ].  ((|(x m) - y m| ≤ (2 * k)) 
⇒ (|x - y| ≤ (r(2 + k)/r(m))))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
absval: |i|
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
apply: f a
, 
multiply: n * m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real: ℝ
, 
uimplies: b supposing a
, 
rge: x ≥ y
, 
guard: {T}
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
squash: ↓T
, 
true: True
, 
rational-approx: (x within 1/n)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
sq_stable: SqStable(P)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
rational-approx-property, 
uimplies_transitivity, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
radd_wf, 
rational-approx_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
r-triangle-inequality2, 
radd_functionality_wrt_rleq, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rleq_functionality, 
rabs-difference-symmetry, 
req_weakening, 
istype-le, 
absval_wf, 
subtract_wf, 
le_witness_for_triv, 
istype-nat, 
nat_plus_wf, 
real_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
absval_pos, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
squash_wf, 
true_wf, 
rabs-int, 
subtype_rel_self, 
iff_weakening_equal, 
int-rdiv_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
set_subtype_base, 
less_than_wf, 
nequal_wf, 
uiff_transitivity, 
rabs_functionality, 
rsub_functionality, 
int-rdiv-req, 
req_transitivity, 
rsub-rdiv, 
rabs-rdiv, 
uiff_transitivity2, 
rdiv_functionality, 
rsub-int, 
rneq_wf, 
subtype_base_sq, 
rleq-int-fractions, 
istype-less_than, 
mul_preserves_le, 
nat_plus_subtype_nat, 
sq_stable__less_than, 
rmul_preserves_rleq, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermAdd_wf, 
radd_functionality, 
rmul_functionality, 
rmul-rinv, 
rmul-int, 
req_inversion, 
radd-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
isectElimination, 
hypothesis, 
setElimination, 
rename, 
independent_functionElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
closedConclusion, 
natural_numberEquality, 
sqequalRule, 
inrFormation_alt, 
productElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
inhabitedIsType, 
multiplyEquality, 
functionIsTypeImplies, 
isectIsTypeImplies, 
dependent_set_memberEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
equalityIstype, 
baseApply, 
sqequalBase, 
intEquality, 
cumulativity, 
applyLambdaEquality
Latex:
\mforall{}[x,y:\mBbbR{}].  \mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[k:\mBbbN{}].    ((|(x  m)  -  y  m|  \mleq{}  (2  *  k))  {}\mRightarrow{}  (|x  -  y|  \mleq{}  (r(2  +  k)/r(m))))
Date html generated:
2019_10_29-AM-10_03_15
Last ObjectModification:
2019_04_23-PM-11_27_06
Theory : reals
Home
Index