Nuprl Lemma : induced-rmetric_wf
∀[Y:Type]. ∀[f:Y ⟶ ℝ].  (induced-rmetric(f) ∈ metric(Y))
Proof
Definitions occuring in Statement : 
induced-rmetric: induced-rmetric(f)
, 
metric: metric(X)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
induced-rmetric: induced-rmetric(f)
, 
induced-metric: induced-metric(d;f)
, 
rabs: |x|
, 
rmetric: rmetric()
Lemmas referenced : 
induced-metric_wf, 
real_wf, 
rmetric_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
isect_memberFormation_alt, 
hypothesisEquality, 
functionIsType, 
universeIsType, 
instantiate, 
universeEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[Y:Type].  \mforall{}[f:Y  {}\mrightarrow{}  \mBbbR{}].    (induced-rmetric(f)  \mmember{}  metric(Y))
Date html generated:
2019_10_29-AM-11_04_55
Last ObjectModification:
2019_10_02-AM-09_46_37
Theory : reals
Home
Index