Step
*
2
1
1
1
of Lemma
int-rdiv-int-rmul
1. k : ℤ-o
2. ¬k < 0
3. a : ℕ+ ⟶ ℤ
4. n : ℕ+
5. 0 < k
6. 2 ≤ k
7. (n * 2) ≤ (n * k)
8. |(n * (a (k * n))) - (k * n) * (a n)| ≤ ((2 * 1) * ((k * n) + n))
9. r : ℤ
10. |r| < |k|
11. (a (k * n) rem k) = r ∈ {r:ℤ| |r| < |k|} 
12. |n| * |r| < |n| * |k|
⊢ (((2 * 1) * ((k * n) + n)) + (|n| * |k|)) ≤ (|n| * |k| * 4)
BY
{ (RWO "absval_pos" 0 THEN Auto) }
Latex:
Latex:
1.  k  :  \mBbbZ{}\msupminus{}\msupzero{}
2.  \mneg{}k  <  0
3.  a  :  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}
4.  n  :  \mBbbN{}\msupplus{}
5.  0  <  k
6.  2  \mleq{}  k
7.  (n  *  2)  \mleq{}  (n  *  k)
8.  |(n  *  (a  (k  *  n)))  -  (k  *  n)  *  (a  n)|  \mleq{}  ((2  *  1)  *  ((k  *  n)  +  n))
9.  r  :  \mBbbZ{}
10.  |r|  <  |k|
11.  (a  (k  *  n)  rem  k)  =  r
12.  |n|  *  |r|  <  |n|  *  |k|
\mvdash{}  (((2  *  1)  *  ((k  *  n)  +  n))  +  (|n|  *  |k|))  \mleq{}  (|n|  *  |k|  *  4)
By
Latex:
(RWO  "absval\_pos"  0  THEN  Auto)
Home
Index