Step
*
1
2
1
1
of Lemma
int-rmul-req
1. k : ℤ
2. ¬k < 0
3. a : ℕ+ ⟶ ℤ
4. n : ℕ+@i
5. 0 < k
6. |(n * (a (k * n))) - (k * n) * (a n)| ≤ ((2 * 1) * ((k * n) + n))
⊢ |n * ((a (k * n)) - k * (a n))| ≤ (|n| * 2 * (|k| + 1))
BY
{ ((RW IntNormC (-1) THENA Auto) THEN (RW IntNormC 0 THENA Auto) THEN (RWO "-1" 0 THENA Auto)) }
1
1. k : ℤ
2. ¬k < 0
3. a : ℕ+ ⟶ ℤ
4. n : ℕ+@i
5. 0 < k
6. |((-1) * k * n * (a n)) + (n * (a (k * n)))| ≤ ((2 * n) + (2 * k * n))
⊢ ((2 * n) + (2 * k * n)) ≤ ((2 * |n|) + (2 * |k| * |n|))
Latex:
Latex:
1. k : \mBbbZ{}
2. \mneg{}k < 0
3. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. n : \mBbbN{}\msupplus{}@i
5. 0 < k
6. |(n * (a (k * n))) - (k * n) * (a n)| \mleq{} ((2 * 1) * ((k * n) + n))
\mvdash{} |n * ((a (k * n)) - k * (a n))| \mleq{} (|n| * 2 * (|k| + 1))
By
Latex:
((RW IntNormC (-1) THENA Auto) THEN (RW IntNormC 0 THENA Auto) THEN (RWO "-1" 0 THENA Auto))
Home
Index