Step
*
of Lemma
integral_wf
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. (∫ f[x] dx on [a, b] ∈ ℝ)
BY
{ (RepUR ``so_apply`` 0 THEN ProveWfLemma) }
1
1. a : ℝ@i
2. b : ℝ@i
3. a ≤ b@i
4. f : [a, b] ⟶ℝ@i
5. mc : f x continuous for x ∈ [a, b]@i
⊢ TERMOF{alt-Riemann-sums-converge-ext:o, 1:l} a b (λx.(f x)) ∈ mc:λx.(f x)[x] continuous for x ∈ [a, b]
⟶ Riemann-sum-alt(λx.(f x);a;b;k + 1)↓ as k→∞
Latex:
Latex:
\mforall{}a:\mBbbR{}. \mforall{}b:\{b:\mBbbR{}| a \mleq{} b\} . \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}. \mforall{}mc:f[x] continuous for x \mmember{} [a, b]. (\mint{} f[x] dx on [a, b] \mmember{} \mBbbR{}\000C)
By
Latex:
(RepUR ``so\_apply`` 0 THEN ProveWfLemma)
Home
Index