Step
*
1
of Lemma
integral_wf
1. a : ℝ@i
2. b : ℝ@i
3. a ≤ b@i
4. f : [a, b] ⟶ℝ@i
5. mc : f x continuous for x ∈ [a, b]@i
⊢ TERMOF{alt-Riemann-sums-converge-ext:o, 1:l} a b (λx.(f x)) ∈ mc:λx.(f x)[x] continuous for x ∈ [a, b]
⟶ Riemann-sum-alt(λx.(f x);a;b;k + 1)↓ as k→∞
BY
{ GenConclAtAddr [2;1] }
1
1. a : ℝ@i
2. b : ℝ@i
3. a ≤ b@i
4. f : [a, b] ⟶ℝ@i
5. mc : f x continuous for x ∈ [a, b]@i
6. v : ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. Riemann-sum-alt(f;a;b;k + 1)↓ as k→∞@i
7. (TERMOF{alt-Riemann-sums-converge-ext:o, 1:l} a b)
= v
∈ (∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. Riemann-sum-alt(f;a;b;k + 1)↓ as k→∞)@i
⊢ v (λx.(f x)) ∈ mc:λx.(f x)[x] continuous for x ∈ [a, b] ⟶ Riemann-sum-alt(λx.(f x);a;b;k + 1)↓ as k→∞
Latex:
Latex:
1. a : \mBbbR{}@i
2. b : \mBbbR{}@i
3. a \mleq{} b@i
4. f : [a, b] {}\mrightarrow{}\mBbbR{}@i
5. mc : f x continuous for x \mmember{} [a, b]@i
\mvdash{} TERMOF\{alt-Riemann-sums-converge-ext:o, 1:l\} a b (\mlambda{}x.(f x))
\mmember{} mc:\mlambda{}x.(f x)[x] continuous for x \mmember{} [a, b] {}\mrightarrow{} Riemann-sum-alt(\mlambda{}x.(f x);a;b;k + 1)\mdownarrow{} as k\mrightarrow{}\minfty{}
By
Latex:
GenConclAtAddr [2;1]
Home
Index