Nuprl Lemma : integral_wf
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  (∫ f[x] dx on [a, b] ∈ ℝ)
Proof
Definitions occuring in Statement : 
integral: ∫ f[x] dx on [a, b]
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
label: ...$L... t
, 
true: True
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
false: False
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
rfun: I ⟶ℝ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
converges: x[n]↓ as n→∞
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
integral: ∫ f[x] dx on [a, b]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
instantiate, 
minusEquality, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
setEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
independent_pairEquality, 
productElimination, 
lambdaEquality, 
because_Cache, 
applyEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
rename, 
thin, 
setElimination, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].    (\mint{}  f[x]  dx  on  [a,  b]  \mmember{}  \mBbbR{}\000C)
Date html generated:
2016_07_08-PM-06_00_20
Last ObjectModification:
2016_07_05-PM-03_15_05
Theory : reals
Home
Index