Nuprl Lemma : integral_wf
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. (∫ f[x] dx on [a, b] ∈ ℝ)
Proof
Definitions occuring in Statement :
integral: ∫ f[x] dx on [a, b]
,
continuous: f[x] continuous for x ∈ I
,
rfun: I ⟶ℝ
,
rccint: [l, u]
,
rleq: x ≤ y
,
real: ℝ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
Definitions unfolded in proof :
label: ...$L... t
,
true: True
,
less_than': less_than'(a;b)
,
subtract: n - m
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
false: False
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
not: ¬A
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
decidable: Dec(P)
,
and: P ∧ Q
,
le: A ≤ B
,
nat: ℕ
,
nat_plus: ℕ+
,
rfun: I ⟶ℝ
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
top: Top
,
exists: ∃x:A. B[x]
,
converges: x[n]↓ as n→∞
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
integral: ∫ f[x] dx on [a, b]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
so_apply: x[s]
Rules used in proof :
equalitySymmetry,
equalityTransitivity,
instantiate,
minusEquality,
intEquality,
independent_isectElimination,
independent_functionElimination,
independent_pairFormation,
unionElimination,
dependent_functionElimination,
natural_numberEquality,
addEquality,
setEquality,
dependent_set_memberEquality,
voidEquality,
voidElimination,
isect_memberEquality,
hypothesisEquality,
independent_pairEquality,
productElimination,
lambdaEquality,
because_Cache,
applyEquality,
hypothesis,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
rename,
thin,
setElimination,
cut,
lambdaFormation,
computationStep,
sqequalTransitivity,
sqequalReflexivity,
sqequalRule,
sqequalSubstitution
Latex:
\mforall{}a:\mBbbR{}. \mforall{}b:\{b:\mBbbR{}| a \mleq{} b\} . \mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}. \mforall{}mc:f[x] continuous for x \mmember{} [a, b]. (\mint{} f[x] dx on [a, b] \mmember{} \mBbbR{}\000C)
Date html generated:
2016_07_08-PM-06_00_20
Last ObjectModification:
2016_07_05-PM-03_15_05
Theory : reals
Home
Index