Nuprl Lemma : integral_wf

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  (∫ f[x] dx on [a, b] ∈ ℝ)


Proof




Definitions occuring in Statement :  integral: ∫ f[x] dx on [a, b] continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: so_apply: x[s] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  label: ...$L... t true: True less_than': less_than'(a;b) subtract: m uimplies: supposing a uiff: uiff(P;Q) false: False implies:  Q rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) and: P ∧ Q le: A ≤ B nat: nat_plus: + rfun: I ⟶ℝ prop: so_lambda: λ2x.t[x] top: Top exists: x:A. B[x] converges: x[n]↓ as n→∞ subtype_rel: A ⊆B uall: [x:A]. B[x] integral: ∫ f[x] dx on [a, b] member: t ∈ T all: x:A. B[x] so_apply: x[s]
Rules used in proof :  equalitySymmetry equalityTransitivity instantiate minusEquality intEquality independent_isectElimination independent_functionElimination independent_pairFormation unionElimination dependent_functionElimination natural_numberEquality addEquality setEquality dependent_set_memberEquality voidEquality voidElimination isect_memberEquality hypothesisEquality independent_pairEquality productElimination lambdaEquality because_Cache applyEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid introduction rename thin setElimination cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].    (\mint{}  f[x]  dx  on  [a,  b]  \mmember{}  \mBbbR{}\000C)



Date html generated: 2016_07_08-PM-06_00_20
Last ObjectModification: 2016_07_05-PM-03_15_05

Theory : reals


Home Index