Nuprl Lemma : interval-totally-bounded

a:ℝ. ∀b:{b:ℝa ≤ b} .  totally-bounded(λx.(x ∈ [a, b]))


Proof




Definitions occuring in Statement :  rccint: [l, u] i-member: r ∈ I totally-bounded: totally-bounded(A) rleq: x ≤ y real: all: x:A. B[x] set: {x:A| B[x]}  lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] totally-bounded: totally-bounded(A) implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q exists: x:A. B[x] guard: {T} sq_type: SQType(T) uimplies: supposing a or: P ∨ Q decidable: Dec(P) nat: rev_implies:  Q iff: ⇐⇒ Q rneq: x ≠ y false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  sq_exists: x:A [B[x]] rless: x < y nat_plus: + squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top true: True less_than': less_than'(a;b) less_than: a < b nequal: a ≠ b ∈  subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rdiv: (x/y) rset: Set(ℝ) cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B i-member: r ∈ I rccint: [l, u] rset-member: x ∈ A real: subtract: m rge: x ≥ y rgt: x > y

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .    totally-bounded(\mlambda{}x.(x  \mmember{}  [a,  b]))



Date html generated: 2020_05_20-AM-11_31_16
Last ObjectModification: 2020_01_06-PM-00_46_40

Theory : reals


Home Index