Nuprl Lemma : interval-totally-bounded
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . totally-bounded(λx.(x ∈ [a, b]))
Proof
Definitions occuring in Statement :
rccint: [l, u]
,
i-member: r ∈ I
,
totally-bounded: totally-bounded(A)
,
rleq: x ≤ y
,
real: ℝ
,
all: ∀x:A. B[x]
,
set: {x:A| B[x]}
,
lambda: λx.A[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
totally-bounded: totally-bounded(A)
,
implies: P
⇒ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
guard: {T}
,
sq_type: SQType(T)
,
uimplies: b supposing a
,
or: P ∨ Q
,
decidable: Dec(P)
,
nat: ℕ
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
rneq: x ≠ y
,
false: False
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
ge: i ≥ j
,
sq_exists: ∃x:A [B[x]]
,
rless: x < y
,
nat_plus: ℕ+
,
squash: ↓T
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
req_int_terms: t1 ≡ t2
,
top: Top
,
true: True
,
less_than': less_than'(a;b)
,
less_than: a < b
,
nequal: a ≠ b ∈ T
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rdiv: (x/y)
,
rset: Set(ℝ)
,
cand: A c∧ B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
i-member: r ∈ I
,
rccint: [l, u]
,
rset-member: x ∈ A
,
real: ℝ
,
subtract: n - m
,
rge: x ≥ y
,
rgt: x > y
Latex:
\mforall{}a:\mBbbR{}. \mforall{}b:\{b:\mBbbR{}| a \mleq{} b\} . totally-bounded(\mlambda{}x.(x \mmember{} [a, b]))
Date html generated:
2020_05_20-AM-11_31_16
Last ObjectModification:
2020_01_06-PM-00_46_40
Theory : reals
Home
Index