Step
*
1
2
of Lemma
irrational-sqrt-number-lemma
1. a : ℤ
2. b : ℕ+
3. n : ℕ
4. (a * a) = (n * b * b) ∈ ℤ
5. ∀a:ℤ. ∀b:ℕ+. (((a * a) = (n * b * b) ∈ ℤ)
⇒ (∀p:ℤ. (prime(p)
⇒ (p | b)
⇒ (p | a))))
⊢ ∃m:ℕn + 1. ((m * m) = n ∈ ℤ)
BY
{ PromoteHyp 3 1 }
1
1. n : ℕ
2. a : ℤ
3. b : ℕ+
4. (a * a) = (n * b * b) ∈ ℤ
5. ∀a:ℤ. ∀b:ℕ+. (((a * a) = (n * b * b) ∈ ℤ)
⇒ (∀p:ℤ. (prime(p)
⇒ (p | b)
⇒ (p | a))))
⊢ ∃m:ℕn + 1. ((m * m) = n ∈ ℤ)
Latex:
Latex:
1. a : \mBbbZ{}
2. b : \mBbbN{}\msupplus{}
3. n : \mBbbN{}
4. (a * a) = (n * b * b)
5. \mforall{}a:\mBbbZ{}. \mforall{}b:\mBbbN{}\msupplus{}. (((a * a) = (n * b * b)) {}\mRightarrow{} (\mforall{}p:\mBbbZ{}. (prime(p) {}\mRightarrow{} (p | b) {}\mRightarrow{} (p | a))))
\mvdash{} \mexists{}m:\mBbbN{}n + 1. ((m * m) = n)
By
Latex:
PromoteHyp 3 1
Home
Index