Nuprl Lemma : irrational-sqrt-number-lemma

a:ℤ. ∀b:ℕ+. ∀n:ℕ.  (((a a) (n b) ∈ ℤ (∃m:ℕ1. ((m m) n ∈ ℤ)))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B nat: nat_plus: + divides: a exists: x:A. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b true: True squash: T bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q int_upper: {i...} cand: c∧ B sq_stable: SqStable(P) int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  equal-wf-base-T int_subtype_base nat_wf nat_plus_wf divides_wf prime_wf prime_divs_prod subtype_base_sq nat_plus_properties nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf equal-wf-base decidable__le intformand_wf intformle_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_less_lemma nat_plus_subtype_nat int_seg_properties int_seg_wf subtract_wf int_seg_subtype false_wf itermSubtract_wf int_term_value_subtract_lemma le_wf all_wf exists_wf equal_wf decidable__lt lelt_wf set_wf less_than_wf primrec-wf2 itermAdd_wf int_term_value_add_lemma mul-swap mul-commutes mul-associates one-mul absval_wf absval-non-neg mul_preserves_le lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma absval_unfold mul_bounds_1a mul-distributes mul-distributes-right add-associates add-swap add-commutes two-mul absval_pos iff_weakening_equal squash_wf true_wf absval_mul least-factor_wf subtype_rel_sets sq_stable__le sq_stable_from_decidable decidable__prime decidable__divides_ext not-lt-2 add_functionality_wrt_le zero-add le-add-cancel mul_cancel_in_le int_upper_properties mul_cancel_in_lt int_upper_subtype_nat mul_cancel_in_eq mul_nzero nequal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality hypothesis multiplyEquality setElimination rename because_Cache dependent_functionElimination independent_functionElimination productElimination dependent_pairFormation promote_hyp instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry unionElimination natural_numberEquality lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll independent_pairFormation addLevel applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality functionEquality addEquality minusEquality equalityElimination lessCases isect_memberFormation sqequalAxiom imageMemberEquality imageElimination equalityUniverse universeEquality setEquality productEquality

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.    (((a  *  a)  =  (n  *  b  *  b))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}n  +  1.  ((m  *  m)  =  n)))



Date html generated: 2017_10_03-AM-11_59_04
Last ObjectModification: 2017_07_28-AM-08_29_56

Theory : reals


Home Index