Nuprl Lemma : irrational-sqrt-number-lemma
∀a:ℤ. ∀b:ℕ+. ∀n:ℕ.  (((a * a) = (n * b * b) ∈ ℤ) 
⇒ (∃m:ℕn + 1. ((m * m) = n ∈ ℤ)))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
true: True
, 
squash: ↓T
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_upper: {i...}
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
equal-wf-base-T, 
int_subtype_base, 
nat_wf, 
nat_plus_wf, 
divides_wf, 
prime_wf, 
prime_divs_prod, 
subtype_base_sq, 
nat_plus_properties, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
nat_plus_subtype_nat, 
int_seg_properties, 
int_seg_wf, 
subtract_wf, 
int_seg_subtype, 
false_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_wf, 
all_wf, 
exists_wf, 
equal_wf, 
decidable__lt, 
lelt_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
itermAdd_wf, 
int_term_value_add_lemma, 
mul-swap, 
mul-commutes, 
mul-associates, 
one-mul, 
absval_wf, 
absval-non-neg, 
mul_preserves_le, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
itermMinus_wf, 
int_term_value_minus_lemma, 
absval_unfold, 
mul_bounds_1a, 
mul-distributes, 
mul-distributes-right, 
add-associates, 
add-swap, 
add-commutes, 
two-mul, 
absval_pos, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
absval_mul, 
least-factor_wf, 
subtype_rel_sets, 
sq_stable__le, 
sq_stable_from_decidable, 
decidable__prime, 
decidable__divides_ext, 
not-lt-2, 
add_functionality_wrt_le, 
zero-add, 
le-add-cancel, 
mul_cancel_in_le, 
int_upper_properties, 
mul_cancel_in_lt, 
int_upper_subtype_nat, 
mul_cancel_in_eq, 
mul_nzero, 
nequal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
natural_numberEquality, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairFormation, 
addLevel, 
applyLambdaEquality, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
functionEquality, 
addEquality, 
minusEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
imageMemberEquality, 
imageElimination, 
equalityUniverse, 
universeEquality, 
setEquality, 
productEquality
Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}b:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.    (((a  *  a)  =  (n  *  b  *  b))  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}n  +  1.  ((m  *  m)  =  n)))
Date html generated:
2017_10_03-AM-11_59_04
Last ObjectModification:
2017_07_28-AM-08_29_56
Theory : reals
Home
Index