Nuprl Lemma : prime_divs_prod

p:ℤ(prime(p)  (∀a1,a2:ℤ.  ((p (a1 a2))  ((p a1) ∨ (p a2)))))


Proof




Definitions occuring in Statement :  prime: prime(a) divides: a all: x:A. B[x] implies:  Q or: P ∨ Q multiply: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: guard: {T} prime: prime(a) and: P ∧ Q
Lemmas referenced :  divides_wf prime_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality multiplyEquality hypothesis Error :inhabitedIsType,  productElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}p:\mBbbZ{}.  (prime(p)  {}\mRightarrow{}  (\mforall{}a1,a2:\mBbbZ{}.    ((p  |  (a1  *  a2))  {}\mRightarrow{}  ((p  |  a1)  \mvee{}  (p  |  a2)))))



Date html generated: 2019_06_20-PM-02_23_58
Last ObjectModification: 2018_10_03-AM-00_12_59

Theory : num_thy_1


Home Index