Nuprl Lemma : decidable__prime
∀n:ℕ. Dec(prime(n))
Proof
Definitions occuring in Statement : 
prime: prime(a), 
nat: ℕ, 
decidable: Dec(P), 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
uimplies: b supposing a, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
atomic: atomic(a), 
cand: A c∧ B
Lemmas referenced : 
nat_wf, 
prime_imp_atomic, 
prime_wf, 
atomic_imp_prime, 
atomic_wf, 
decidable_functionality, 
not_wf, 
equal_wf, 
assoced_wf, 
decidable__and2, 
and_wf, 
reducible_wf, 
decidable__not, 
decidable__equal_int, 
decidable__assoced, 
decidable__reducible
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
hypothesis, 
independent_pairFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
intEquality, 
natural_numberEquality, 
because_Cache, 
isect_memberEquality
Latex:
\mforall{}n:\mBbbN{}.  Dec(prime(n))
Date html generated:
2016_05_14-PM-04_21_23
Last ObjectModification:
2015_12_26-PM-08_17_30
Theory : num_thy_1
Home
Index