Nuprl Lemma : decidable__reducible
∀n:ℕ. Dec(reducible(n))
Proof
Definitions occuring in Statement : 
reducible: reducible(a)
, 
nat: ℕ
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
reducible: reducible(a)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
int_nzero: ℤ-o
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
gt: i > j
, 
nequal: a ≠ b ∈ T 
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
divides: b | a
, 
lelt: i ≤ j < k
, 
cand: A c∧ B
, 
assoced: a ~ b
, 
sq_type: SQType(T)
Lemmas referenced : 
nat_wf, 
decidable__equal_int, 
reducible_wf, 
not_wf, 
or_wf, 
equal-wf-T-base, 
exists_wf, 
int_nzero_wf, 
assoced_wf, 
equal_wf, 
int_seg_wf, 
pos_mul_arg_bounds, 
int_nzero_properties, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformeq_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
absval_wf, 
absval_pos, 
decidable__le, 
le_wf, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
absval_mul, 
intformimplies_wf, 
intformor_wf, 
int_formual_prop_imp_lemma, 
int_formula_prop_or_lemma, 
divisors_bound, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
less_than_wf, 
multiply-is-int-iff, 
absval-non-neg, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
divides_of_absvals, 
divides_wf, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
nequal_wf, 
decidable__or, 
decidable__exists_int_seg, 
decidable__and2, 
decidable__not, 
decidable__assoced, 
decidable_functionality, 
int_entire
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
hypothesis, 
rename, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
hypothesisEquality, 
natural_numberEquality, 
unionElimination, 
inlFormation, 
isectElimination, 
because_Cache, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_pairFormation, 
productElimination, 
sqequalRule, 
lambdaEquality, 
productEquality, 
multiplyEquality, 
addEquality, 
independent_functionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
dependent_set_memberEquality, 
imageMemberEquality, 
universeEquality, 
minusEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
orFunctionality, 
inrFormation
Latex:
\mforall{}n:\mBbbN{}.  Dec(reducible(n))
Date html generated:
2017_04_17-AM-09_42_44
Last ObjectModification:
2017_02_27-PM-05_38_03
Theory : num_thy_1
Home
Index