Nuprl Lemma : decidable__reducible

n:ℕDec(reducible(n))


Proof




Definitions occuring in Statement :  reducible: reducible(a) nat: decidable: Dec(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q prop: uall: [x:A]. B[x] reducible: reducible(a) iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] so_lambda: λ2x.t[x] int_nzero: -o so_apply: x[s] rev_implies:  Q int_seg: {i..j-} gt: i > j nequal: a ≠ b ∈  ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top squash: T subtype_rel: A ⊆B true: True guard: {T} nat_plus: + le: A ≤ B uiff: uiff(P;Q) less_than': less_than'(a;b) subtract: m divides: a lelt: i ≤ j < k cand: c∧ B assoced: b sq_type: SQType(T)
Lemmas referenced :  nat_wf decidable__equal_int reducible_wf not_wf or_wf equal-wf-T-base exists_wf int_nzero_wf assoced_wf equal_wf int_seg_wf pos_mul_arg_bounds int_nzero_properties nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf intformeq_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_le_lemma int_formula_prop_wf absval_wf absval_pos decidable__le le_wf iff_weakening_equal squash_wf true_wf absval_mul intformimplies_wf intformor_wf int_formual_prop_imp_lemma int_formula_prop_or_lemma divisors_bound false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf multiply-is-int-iff absval-non-neg itermAdd_wf int_term_value_add_lemma lelt_wf divides_of_absvals divides_wf subtype_base_sq int_subtype_base int_seg_properties nequal_wf decidable__or decidable__exists_int_seg decidable__and2 decidable__not decidable__assoced decidable_functionality int_entire
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid hypothesis rename sqequalHypSubstitution dependent_functionElimination thin setElimination hypothesisEquality natural_numberEquality unionElimination inlFormation isectElimination because_Cache intEquality equalityTransitivity equalitySymmetry baseClosed independent_pairFormation productElimination sqequalRule lambdaEquality productEquality multiplyEquality addEquality independent_functionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality imageElimination equalityUniverse levelHypothesis dependent_set_memberEquality imageMemberEquality universeEquality minusEquality pointwiseFunctionality promote_hyp baseApply closedConclusion applyLambdaEquality instantiate cumulativity orFunctionality inrFormation

Latex:
\mforall{}n:\mBbbN{}.  Dec(reducible(n))



Date html generated: 2017_04_17-AM-09_42_44
Last ObjectModification: 2017_02_27-PM-05_38_03

Theory : num_thy_1


Home Index