Nuprl Lemma : least-factor_wf
∀[n:ℤ]. least-factor(n) ∈ {p:ℕ| 1 < p ∧ prime(p) ∧ (p | n) ∧ (∀q:ℕ. (prime(q) 
⇒ (q | n) 
⇒ (p ≤ q)))}  supposing 1 < |n\000C|
Proof
Definitions occuring in Statement : 
least-factor: least-factor(n)
, 
prime: prime(a)
, 
divides: b | a
, 
absval: |i|
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assoced: a ~ b
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
, 
least-factor: least-factor(n)
, 
subtract: n - m
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
atomic: atomic(a)
, 
reducible: reducible(a)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
gt: i > j
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
true: True
, 
divides: b | a
, 
prime: prime(a)
Lemmas referenced : 
less_than_wf, 
absval_wf, 
nat_wf, 
divides_iff_rem_zero, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
nequal_wf, 
absval_assoced, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
decidable__lt, 
lelt_wf, 
assert_of_eq_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtract-add-cancel, 
assert_wf, 
eq_int_wf, 
int_seg_properties, 
int_seg_subtype_nat, 
false_wf, 
nat_properties, 
mu_wf, 
mu-property, 
add-nat, 
le_wf, 
add-subtract-cancel, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
divides_wf, 
equal-wf-T-base, 
not_wf, 
prime_wf, 
all_wf, 
atomic_imp_prime, 
assoced_wf, 
reducible_wf, 
assoced_nelim, 
absval_ifthenelse, 
int_nzero_properties, 
int_nzero_wf, 
lt_int_wf, 
bool_wf, 
le_int_wf, 
bnot_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
assoced_functionality_wrt_assoced, 
assoced_weakening, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
equal_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
subtype_base_sq, 
neg_mul_arg_bounds, 
gt_wf, 
decidable__equal_int, 
mul_preserves_lt, 
not-lt-2, 
less-iff-le, 
add_functionality_wrt_le, 
le-add-cancel, 
divides_reflexivity, 
divides_functionality_wrt_assoced, 
equal-wf-base-T, 
divides_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache, 
intEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
independent_functionElimination, 
unionElimination, 
imageElimination, 
remainderEquality, 
addEquality, 
applyLambdaEquality, 
promote_hyp, 
addLevel, 
impliesFunctionality, 
productEquality, 
functionEquality, 
minusEquality, 
levelHypothesis, 
equalityElimination, 
instantiate, 
cumulativity, 
inrFormation, 
inlFormation, 
multiplyEquality, 
impliesLevelFunctionality
Latex:
\mforall{}[n:\mBbbZ{}]
    least-factor(n)  \mmember{}  \{p:\mBbbN{}|  1  <  p  \mwedge{}  prime(p)  \mwedge{}  (p  |  n)  \mwedge{}  (\mforall{}q:\mBbbN{}.  (prime(q)  {}\mRightarrow{}  (q  |  n)  {}\mRightarrow{}  (p  \mleq{}  q)))\}    su\000Cpposing  1  <  |n|
Date html generated:
2018_05_21-PM-06_58_55
Last ObjectModification:
2017_07_26-PM-05_00_24
Theory : general
Home
Index