Nuprl Lemma : least-factor_wf

[n:ℤ]. least-factor(n) ∈ {p:ℕ1 < p ∧ prime(p) ∧ (p n) ∧ (∀q:ℕ(prime(q)  (q n)  (p ≤ q)))}  supposing 1 < |n\000C|


Proof




Definitions occuring in Statement :  least-factor: least-factor(n) prime: prime(a) divides: a absval: |i| nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B nat: all: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q assoced: b int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) guard: {T} le: A ≤ B less_than': less_than'(a;b) ge: i ≥  least-factor: least-factor(n) subtract: m cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] atomic: atomic(a) reducible: reducible(a) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff gt: i > j sq_type: SQType(T) nat_plus: + true: True divides: a prime: prime(a)
Lemmas referenced :  less_than_wf absval_wf nat_wf divides_iff_rem_zero satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base nequal_wf absval_assoced decidable__le subtract_wf intformnot_wf intformle_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma decidable__lt lelt_wf assert_of_eq_int itermAdd_wf int_term_value_add_lemma subtract-add-cancel assert_wf eq_int_wf int_seg_properties int_seg_subtype_nat false_wf nat_properties mu_wf mu-property add-nat le_wf add-subtract-cancel add-associates add-swap add-commutes zero-add divides_wf equal-wf-T-base not_wf prime_wf all_wf atomic_imp_prime assoced_wf reducible_wf assoced_nelim absval_ifthenelse int_nzero_properties int_nzero_wf lt_int_wf bool_wf le_int_wf bnot_wf itermMinus_wf int_term_value_minus_lemma assoced_functionality_wrt_assoced assoced_weakening uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf itermMultiply_wf int_term_value_mul_lemma subtype_base_sq neg_mul_arg_bounds gt_wf decidable__equal_int mul_preserves_lt not-lt-2 less-iff-le add_functionality_wrt_le le-add-cancel divides_reflexivity divides_functionality_wrt_assoced equal-wf-base-T divides_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin natural_numberEquality hypothesisEquality applyEquality lambdaEquality setElimination rename isect_memberEquality because_Cache intEquality dependent_functionElimination dependent_set_memberEquality lambdaFormation independent_isectElimination dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation computeAll baseApply closedConclusion baseClosed productElimination independent_functionElimination unionElimination imageElimination remainderEquality addEquality applyLambdaEquality promote_hyp addLevel impliesFunctionality productEquality functionEquality minusEquality levelHypothesis equalityElimination instantiate cumulativity inrFormation inlFormation multiplyEquality impliesLevelFunctionality

Latex:
\mforall{}[n:\mBbbZ{}]
    least-factor(n)  \mmember{}  \{p:\mBbbN{}|  1  <  p  \mwedge{}  prime(p)  \mwedge{}  (p  |  n)  \mwedge{}  (\mforall{}q:\mBbbN{}.  (prime(q)  {}\mRightarrow{}  (q  |  n)  {}\mRightarrow{}  (p  \mleq{}  q)))\}    su\000Cpposing  1  <  |n|



Date html generated: 2018_05_21-PM-06_58_55
Last ObjectModification: 2017_07_26-PM-05_00_24

Theory : general


Home Index