Nuprl Lemma : matrix-plus-sq-real-matrix-add
∀[A,B:Top].  (A + B ~ A + B)
Proof
Definitions occuring in Statement : 
real-matrix-add: A + B
, 
real-ring: real-ring()
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
, 
matrix-plus: M + N
Definitions unfolded in proof : 
real-matrix-add: A + B
, 
matrix-plus: M + N
, 
real-ring: real-ring()
, 
rng_plus: +r
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
infix_ap: x f y
, 
matrix-ap: M[i,j]
, 
mx: matrix(M[x; y])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
isectIsTypeImplies, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}[A,B:Top].    (A  +  B  \msim{}  A  +  B)
Date html generated:
2019_10_30-AM-08_18_24
Last ObjectModification:
2019_09_19-AM-11_53_38
Theory : reals
Home
Index