Nuprl Lemma : mdist-rn-prod-metric
∀[k,x,y:Top].  (mdist(rn-prod-metric(k);x;y) ~ Σ{|(x i) - y i| | 0≤i≤k - 1})
Proof
Definitions occuring in Statement : 
rn-prod-metric: rn-prod-metric(n)
, 
mdist: mdist(d;x;y)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rabs: |x|
, 
rsub: x - y
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
subtract: n - m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prod-metric: prod-metric(k;d)
, 
rmetric: rmetric()
, 
mdist: mdist(d;x;y)
, 
rn-prod-metric: rn-prod-metric(n)
Lemmas referenced : 
istype-top
Rules used in proof : 
hypothesis, 
extract_by_obid, 
isectIsTypeImplies, 
thin, 
isectElimination, 
isect_memberEquality_alt, 
sqequalHypSubstitution, 
hypothesisEquality, 
inhabitedIsType, 
axiomSqEquality, 
cut, 
introduction, 
isect_memberFormation_alt, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[k,x,y:Top].    (mdist(rn-prod-metric(k);x;y)  \msim{}  \mSigma{}\{|(x  i)  -  y  i|  |  0\mleq{}i\mleq{}k  -  1\})
Date html generated:
2019_10_30-AM-08_34_04
Last ObjectModification:
2019_10_27-PM-04_54_30
Theory : reals
Home
Index