Nuprl Lemma : mesh-trivial-partition
∀[I:Top]. (partition-mesh(I;[]) ~ |I|)
Proof
Definitions occuring in Statement : 
partition-mesh: partition-mesh(I;p)
, 
i-length: |I|
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
i-length: |I|
, 
partition-mesh: partition-mesh(I;p)
, 
full-partition: full-partition(I;p)
, 
frs-mesh: frs-mesh(p)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
lt_int: i <z j
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
rmaximum: rmaximum(n;m;k.x[k])
, 
select: L[n]
, 
cons: [a / b]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
length_of_cons_lemma, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
primrec0_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[I:Top].  (partition-mesh(I;[])  \msim{}  |I|)
Date html generated:
2016_05_18-AM-08_59_57
Last ObjectModification:
2015_12_27-PM-11_35_08
Theory : reals
Home
Index