Step * 1 of Lemma mesh-uniform-partition


1. Interval
2. icompact(I)
3. : ℕ+
4. 2 ≤ ||full-partition(I;uniform-partition(I;k))||
5. : ℕ(||full-partition(I;uniform-partition(I;k))|| 2) 1
6. ||full-partition(I;uniform-partition(I;k))|| (k 1) ∈ ℤ
7. i < k
⊢ ((r(k) full-partition(I;uniform-partition(I;k))[i 1]) -(r(k) full-partition(I;uniform-partition(I;k))[i]))
|I|
BY
((RWO "rmul_comm" 0⋅ THENA Auto) THEN RWO "uniform-partition-point" THEN Auto) }

1
1. Interval
2. icompact(I)
3. : ℕ+
4. 2 ≤ ||full-partition(I;uniform-partition(I;k))||
5. : ℕ(||full-partition(I;uniform-partition(I;k))|| 2) 1
6. ||full-partition(I;uniform-partition(I;k))|| (k 1) ∈ ℤ
7. i < k
⊢ ((((r(k) r(i 1)) left-endpoint(I)) (r(i 1) right-endpoint(I)))
-(((r(k) r(i)) left-endpoint(I)) (r(i) right-endpoint(I))))
|I|


Latex:


Latex:

1.  I  :  Interval
2.  icompact(I)
3.  k  :  \mBbbN{}\msupplus{}
4.  2  \mleq{}  ||full-partition(I;uniform-partition(I;k))||
5.  i  :  \mBbbN{}(||full-partition(I;uniform-partition(I;k))||  -  2)  +  1
6.  ||full-partition(I;uniform-partition(I;k))||  =  (k  +  1)
7.  i  <  k
\mvdash{}  ((r(k)  *  full-partition(I;uniform-partition(I;k))[i  +  1])
+  -(r(k)  *  full-partition(I;uniform-partition(I;k))[i]))
=  |I|


By


Latex:
((RWO  "rmul\_comm"  0\mcdot{}  THENA  Auto)  THEN  RWO  "uniform-partition-point"  0  THEN  Auto)




Home Index