Step * 1 1 of Lemma mesh-uniform-partition


1. Interval
2. icompact(I)
3. : ℕ+
4. 2 ≤ ||full-partition(I;uniform-partition(I;k))||
5. : ℕ(||full-partition(I;uniform-partition(I;k))|| 2) 1
6. ||full-partition(I;uniform-partition(I;k))|| (k 1) ∈ ℤ
7. i < k
⊢ ((((r(k) r(i 1)) left-endpoint(I)) (r(i 1) right-endpoint(I)))
-(((r(k) r(i)) left-endpoint(I)) (r(i) right-endpoint(I))))
|I|
BY
(nRNorm THENA Auto) }

1
1. Interval
2. icompact(I)
3. : ℕ+
4. 2 ≤ ||full-partition(I;uniform-partition(I;k))||
5. : ℕ(||full-partition(I;uniform-partition(I;k))|| 2) 1
6. ||full-partition(I;uniform-partition(I;k))|| (k 1) ∈ ℤ
7. i < k
⊢ (-(left-endpoint(I)) right-endpoint(I)) |I|


Latex:


Latex:

1.  I  :  Interval
2.  icompact(I)
3.  k  :  \mBbbN{}\msupplus{}
4.  2  \mleq{}  ||full-partition(I;uniform-partition(I;k))||
5.  i  :  \mBbbN{}(||full-partition(I;uniform-partition(I;k))||  -  2)  +  1
6.  ||full-partition(I;uniform-partition(I;k))||  =  (k  +  1)
7.  i  <  k
\mvdash{}  ((((r(k)  -  r(i  +  1))  *  left-endpoint(I))  +  (r(i  +  1)  *  right-endpoint(I)))
+  -(((r(k)  -  r(i))  *  left-endpoint(I))  +  (r(i)  *  right-endpoint(I))))
=  |I|


By


Latex:
(nRNorm  0  THENA  Auto)




Home Index