Step
*
1
1
1
of Lemma
mesh-uniform-partition
1. I : Interval
2. icompact(I)
3. k : ℕ+
4. 2 ≤ ||full-partition(I;uniform-partition(I;k))||
5. i : ℕ(||full-partition(I;uniform-partition(I;k))|| - 2) + 1
6. ||full-partition(I;uniform-partition(I;k))|| = (k + 1) ∈ ℤ
7. i < k
⊢ (-(left-endpoint(I)) + right-endpoint(I)) = |I|
BY
{ (Unfold `i-length` 0⋅ THEN Auto) }
Latex:
Latex:
1.  I  :  Interval
2.  icompact(I)
3.  k  :  \mBbbN{}\msupplus{}
4.  2  \mleq{}  ||full-partition(I;uniform-partition(I;k))||
5.  i  :  \mBbbN{}(||full-partition(I;uniform-partition(I;k))||  -  2)  +  1
6.  ||full-partition(I;uniform-partition(I;k))||  =  (k  +  1)
7.  i  <  k
\mvdash{}  (-(left-endpoint(I))  +  right-endpoint(I))  =  |I|
By
Latex:
(Unfold  `i-length`  0\mcdot{}  THEN  Auto)
Home
Index