Step
*
of Lemma
mtb-cantor-map-onto-common
∀[X:Type]
∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀mtb:m-TB(X;d). ∀n:ℕ. ∀x,y:X.
((mdist(d;x;y) ≤ (r1/r(n + 1)))
⇒ (∃p,q:mtb-cantor(mtb)
((p = q ∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)) ∧ mtb-cantor-map(d;cmplt;mtb;p) ≡ x ∧ mtb-cantor-map(d;cmplt;mtb;q) ≡ y)))
BY
{ (Auto
THEN (InstLemma `mtb-point-cantor-seq-regular` [⌜X⌝;⌜d⌝;⌜mtb⌝;⌜x⌝]⋅ THENA Auto)
THEN (InstLemma `m-regularize-of-regular` [⌜X⌝;⌜d⌝;⌜mtb-seq(mtb;mtb-point-cantor(mtb;x))⌝]⋅
THENA (Auto THEN InstLemma `m-k-regular-monotone` [⌜1⌝;⌜2⌝]⋅ THEN Auto)
)
THEN (InstLemma `m-regularize-mcauchy` [⌜X⌝;⌜d⌝]⋅ THENA Auto)
THEN (Assert mtb-cantor(mtb) ⊆r (i:ℕn ⟶ ℕ(fst(mtb)) i) BY
(Unfold `mtb-cantor` 0 THEN RepeatFor 2 (DVar `mtb') THEN Auto))
THEN (D 0 With ⌜mtb-point-cantor(mtb;x)⌝ THENA (Auto THEN RepeatFor 2 (DVar `mtb') THEN Auto))
THEN (D 0 With ⌜λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi ⌝
THENA (Auto THEN RepeatFor 2 (DVar `mtb') THEN Auto)
)
THEN Auto) }
1
1. [X] : Type
2. d : metric(X)
3. cmplt : mcomplete(X with d)
4. mtb : m-TB(X;d)
5. n : ℕ
6. x : X
7. y : X
8. mdist(d;x;y) ≤ (r1/r(n + 1))
9. m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10. m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x))) = mtb-seq(mtb;mtb-point-cantor(mtb;x)) ∈ (ℕ ⟶ X)
11. ∀[s:ℕ ⟶ X]. (λk.(6 * k) ∈ mcauchy(d;n.m-regularize(d;s) n))
12. mtb-cantor(mtb) ⊆r (i:ℕn ⟶ ℕ(fst(mtb)) i)
13. mtb-point-cantor(mtb;x)
= (λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi )
∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)
⊢ mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
2
1. [X] : Type
2. d : metric(X)
3. cmplt : mcomplete(X with d)
4. mtb : m-TB(X;d)
5. n : ℕ
6. x : X
7. y : X
8. mdist(d;x;y) ≤ (r1/r(n + 1))
9. m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10. m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x))) = mtb-seq(mtb;mtb-point-cantor(mtb;x)) ∈ (ℕ ⟶ X)
11. ∀[s:ℕ ⟶ X]. (λk.(6 * k) ∈ mcauchy(d;n.m-regularize(d;s) n))
12. mtb-cantor(mtb) ⊆r (i:ℕn ⟶ ℕ(fst(mtb)) i)
13. mtb-point-cantor(mtb;x)
= (λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi )
∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)
14. mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
⊢ mtb-cantor-map(d;cmplt;mtb;λi.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi ) ≡ y
Latex:
Latex:
\mforall{}[X:Type]
\mforall{}d:metric(X). \mforall{}cmplt:mcomplete(X with d). \mforall{}mtb:m-TB(X;d). \mforall{}n:\mBbbN{}. \mforall{}x,y:X.
((mdist(d;x;y) \mleq{} (r1/r(n + 1)))
{}\mRightarrow{} (\mexists{}p,q:mtb-cantor(mtb)
((p = q) \mwedge{} mtb-cantor-map(d;cmplt;mtb;p) \mequiv{} x \mwedge{} mtb-cantor-map(d;cmplt;mtb;q) \mequiv{} y)))
By
Latex:
(Auto
THEN (InstLemma `mtb-point-cantor-seq-regular` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}mtb\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `m-regularize-of-regular` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{};\mkleeneopen{}mtb-seq(mtb;mtb-point-cantor(mtb;x))\mkleeneclose{}]\mcdot{}
THENA (Auto THEN InstLemma `m-k-regular-monotone` [\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{} THEN Auto)
)
THEN (InstLemma `m-regularize-mcauchy` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}d\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (Assert mtb-cantor(mtb) \msubseteq{}r (i:\mBbbN{}n {}\mrightarrow{} \mBbbN{}(fst(mtb)) i) BY
(Unfold `mtb-cantor` 0 THEN RepeatFor 2 (DVar `mtb') THEN Auto))
THEN (D 0 With \mkleeneopen{}mtb-point-cantor(mtb;x)\mkleeneclose{} THENA (Auto THEN RepeatFor 2 (DVar `mtb') THEN Auto))
THEN (D 0 With \mkleeneopen{}\mlambda{}i.if i <z n then mtb-point-cantor(mtb;x) i else mtb-point-cantor(mtb;y) i fi \mkleeneclose{}
THENA (Auto THEN RepeatFor 2 (DVar `mtb') THEN Auto)
)
THEN Auto)
Home
Index